EVA/starch/POE composite for footwear material: How the chemical composition affects its properties compared to standards

Umi Reza Lestari, Gunawan Priambodo, Dwi Wahini Nurhajati


The usage of biodegradable foam material in footwear components has positive impacts on environmental sustainability when disposed into landfills. This study was aimed to investigate the effects of polyolefin elastomer (POE) on its properties of foamed EVA/cassava starch composites compared to standards. Foamed EVA/cassava starch composites were prepared by mixing EVA, cassava starch, and additives using a two-roll mill laboratory scale. Content of POE was varied 10-20 phr. The ratios of EVA/cassava starch were varied from 90/10; 80/20; 70/30; and 60/40. Effects of POE were characterized its density, tensile properties, tear strength, permanent set, abrasion resistance, flex resistance, morphology, and biodegradability. It was found that the increase of POE content in EVA/starch composites increased the density and abrassion resistance, but decreased the tensile strength, elongation at break, and permanent set properties. The best formula of foamed EVA/cassava starch/POE composites for footwear materials contains EVA 80 phr, starch 20 phr and POE 20 phr with density 0.983 g/cm³, tensile strength 22.27 kg/ cm², elongation at break 645.67%, tear strength 9.42 N/mm, volume loss 88.907 mm, no crack when flexed 150 kcs. These results met the requirements of SNI 0778:2009-Sol Karet Cetak for quality classifcation 3 of outsoles. The foamed composite containing POE20 has denser morphology than POE10, while the addition of POE has no signifcance in weight loss after burial test

Full Text:



ASTM International. (2018). ASTM D5988-18 Standard test method for determining aerobic biodegradation of plastic materials in soil. PA, USA: ASTM.

BSN (Badan Standardisasi Nasional). (2009). SNI 0778:2009 Sol karet cetak. Jakarta, Indonesia: BSN.

Ferreira, E. J., Dias, M. M. & Schneider, E. L. (2018). Analysis of non-uniform expansion behavior of injected EVA. Academic Journal of Polymer Science, 1(4), 61−65. https://doi.org/10.19080/AJOP.2018.01.555569

Gong, W., Fu, H., Zhang, C., Ban, D., Yin, X., He, Y., He, L. & Pei, X. (2018). Study on foaming quality and impact property of foamed polypropylene composites. Polymers, 10(12), 1375. https://doi.org/10.3390/polym10121375

Guo, Y., Hao, X., Liang, G. (2021). Modification and properties of eva foamed material with hemp stem powder. Journal of Physics: Conference Series, 1759, 012013. https://doi.org/10.1088/1742-6596/1759/1/012013

Hamadache, H., Djidjelli, H., Boukerrou, A., Kaci, M., Jofre-Reche, J. A., & Martín-Martínez, J. M. (2019). Different compatibility approaches to improve the thermal and mechanical properties of EVA/starch composites. Polymer Composites, 40(8), 3242−3253. https://doi.org/10.1002/pc.25179

Hemmasi, A. H., Khademi-Eslam, H., Pourabbasi, S., Ghasemi, I., & Talaiepour, M. (2011). Cell morphology and physicomechanical properties of HDPE/EVA/rice hull hybrid foamed composites. Bioresources, 6(3), 2291−2308.

ISO (International Standard Organization). (2015). ISO 34-1:2015(E) Rubber, vulcanized or thermoplastic — Determination of tear strength — Part 1: Trouser, angle, and crescent test pieces. Geneva, Switzerland: International Standard Organization.

ISO (International Standard Organization). (2017a). ISO 37:2017(E) Rubber vulcanized or thermoplastic – Determination of tensile stress-strain properties. Geneva, Switzerland: International Standard Organization.

ISO (International Standard Organization). (2017b). ISO 4649:2017 Rubber, vulcanized or thermoplastic — Determination of abrasion resistance using a rotating cylindrical drum device. Geneva, Switzerland: International Standard Organization.

ISO (International Standard Organization). (2018). ISO 2781:2018(E) Rubber, vulcanized or thermoplastic — Determination of density (Method A). Geneva, Switzerland: International Standard Organization.

Ke, Y., Cheng, S., Zhang, Q., & Liu, C. (2011). EVA material for sneaker sole and preparation method thereof. China patent CN102134349B.

Kim, D. Y., Kim, G. H., Lee, D. Y., & Seo, K. H. (2017). Effects of compatibility on foaming behavior of polypropylene/polyolefin elastomer blends prepared using a chemical blowing agent. Journal of Applied Polymer Science, 134, 45201. https://doi.org/10.1002/app.45201

Liu, L. (2018). Comparison of shock absorption performance of basketball shoe with different sole structures. Leather and Footwear Journal, 18(1), 45−52. https://doi.org/10.24264/lfj.18.1.6

Macedo, J. R. N., & Rosa, D. S. (2015). Effect of fiber and starch incorporation in biodegradation of PLA-TPS-cotton composites. Key Engineering Materials, 668, 54–62. https://doi.org/10.4028/www.scientifc.net/KEM.668.54

Rodriguez-Perez, M. A., Simoes, R. D., RomanLorza, S., Alvarez-Lainez, M., Montoya-Mesa, C., Constantino, C. J. L., & de Saja, J. A. (2012). Foaming of EVA/starch blends: Characterization of the structure, physical properties, and biodegradability. Polymer Engineering and Science, 52(1), 62−70. https://doi.org/10.1002/pen.22046

Sessini, V., Arrieta, M. P., Raquez, J. M., Dubois, P., Kenny, J. M., & Peponi, L. (2019). Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 159, 184–198. https://doi.org/10.1016/j.polymdegradstab.2018.11.025

Wang, S., Ameli, A., Kazemi Y., Kong, T., Park, C. B., & Naguib, H. E. (2015). Decoupling the effects of cell size and relative density on electrical conductivity in polystyrene/MWCNT nanocomposite foams. FOAMS® Conference (Sept.10-11, 2015)

Wu, J., Chen, C., Wu, Y., Wu, G., Kuo, M. C., & Tsai, Y. (2015). Mechanical properties, morphology, and crystallization behavior of polypropylene/elastomer/talc composites. Polymer Composites, 36(1), 69−77. https://doi.org/10.1002/pc.22914

Yang, F., Pan, L., Ma, Z., Lou, Y., Li, Y., & Li, Y. (2020). Highly elastic, strong, and reprocessable crosslinked polyolefin elastomers enabled by boronic ester bonds. Polymer Chemistry, 11, 3285−3295. https://doi.org/10.1039/D0PY00235F

Yang, F., Wang, X., Ma, Z., Wang, B., Pan, L., & Li, Y. (2020). Copolymerization of propylene with higher-olefins by a pyridylamidohafnium catalyst: An effective approach to polypropylenebased elastomer. Polymers, 12, 89. https://doi.org/10.3390/polym12010089.

Zhang, Y. F., Zheng, Y. Y., Liu, Y., Xiao, Y. Y. (2014). The preliminary research on EVA sole foaming materials with wet grafted starch. Functional Materials, 44(15), 2253−2257. https://doi.org10.3969/j.issn.1001-9731.2013.15.027

DOI: http://dx.doi.org/10.20543/mkkp.v37i2.7449


  • There are currently no refbacks.

Copyright (c) 2021 Umi Reza Lestari, Gunawan Priambodo, Dwi Wahini Nurhajati

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


MKKP indexed by:

Cover Page Cover Page     Cover Page    Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page    Cover Page    Cover Page    Cover Page     Cover Page     Cover Page   Cover Page   Cover Page   Cover Page   Cover Page              




Free counters!