Karakteristik fisis bioplastik yang dibuat dari kombinasi pati tapioka dan kasein susu apkir

Ariya Dwi Nugrahanto, Asih Kurniawati, Yuny Erwanto

Abstract


Penelitian ini bertujuan untuk mengembangkan bioplastik dari kombinasi pati tapioka dan kasein serta mengetahui karakteristik fisis, seperti ketebalan, densitas, transmisi cahaya, dan opasitas. Komposisi bioplastik dibuat dari dua jenis kasein, yaitu kasein komersial dan kasein susu afkir, dengan perbandingan pati tapioka dan kasein yang terdiri dari 4 kelompok perlakuan (4:0, 3:1, 2,5:1,5, 2:2). Setiap perlakuan diulang sebanyak 6 kali. Data karakteristik fsis, yang diperoleh, dianalisis menggunakan analisis varian rancangan acak lengkap two-way Anova. Jika terdapat perbedaan, dilanjutkan dengan uji Duncan multiple range test (DMRT). Hasil penelitian menunjukkan bahwa rasio pati dan kasein berpengaruh sangat nyata terhadap semua parameter uji (P<0,01). Peningkatan kasein komersial (KK) dan kasein susu apkir (KSA) meningkatkan ketebalan dan opasitas, sementara densitas dan transmisi cahaya menurun. Berdasarkan penelitian yang dilakukan, bioplastik dapat dibuat dengan kombinasi rasio pati tapioka dan jenis kasein yang berbeda dengan hasil terbaik pada rasio 2:2 yang menghasilkan ketebalan 0,29 mm, transmisi cahaya 20,03%, opasitas 2,51%, sementara pada densitas memiliki nilai terkecil 0,15 gr/cm3. Kesimpulannya bahan kasein dari susu apkir masih bisa digunakan sebagai biomaterial untuk pembuatan bioplastik dikombinasikan dengan tepung tapioka.


Full Text:

PDF

References


Alcázar-Alay, S. C., & Meireles, M. A. A. (2015). Physicochemical properties, modifcations and applications of starches from different botanical sources. Food Science and Technology, 35(2), 215–236. https://doi.org/10.1590/1678-457X.6749

Asmitara, R., & Darni, Y. (2016). Aplikasi edible film berbasis Eucheuma cottoni-gelatin pada buahbuahan. In J. Agustian, E. Azwar, D. Lesmana, Azhar, I. M. Gandidi, T. Suhartati, R. H. Ismono, H. Insan, F. E. Prasmatiwi, Subeki, Sutikno, T. Susanto, Susilawati (Eds.), Peran Teknologi dan Inovasi untuk Pengembangan Industri Berbasis Sumber Daya Alam Lokal Secara Terpadu (pp. 40–43). Bandar Lampung, Indonesia: Balai Riset dan Standardisasi Industri Bandar Lampung.

Apriliyani, M. W., Purwadi, Manab, A., W. Apriliyanti, M. W., & Ikhwan, A. D. (2020). Characteristics of moisture content, swelling, opacity and transparency with addition chitosan as edible films/coating base on casein. Advance Journal of Food Science and Technology, 18(1), 9–14. https://doi.org/10.19026/ajfst.18.6041

ASTM (American Society for Testing and Materials). (2013). ASTM D6988-13 Standard guide for determination of thickness of plastic film test specimens. Pennsylvania, USA: ASTM. https://doi.org/10.1520/D6988-13

BPS (Badan Pusat Statistik). (2019). Produksi susu segar menurut provinsi (ton) 2009-2019. https://www.bps.go.id/linkTableDinamis/view/id/1083, diakses 25 Oktober 2021.

Benbettaïeb, N., Gay, J., Karbowiak, T., & Debeaufort, F. (2016). Tuning the functional properties of polysaccharide–protein bio-based edible films by chemical, enzymatic, and physical crosslinking. Comprehensive Reviews in Food Science and Food Safety, 15(4), 739–752. https://doi.org/10.1111/1541-4337.12210

Bonnaillie, L. M., Zhang, H., Akkurt, S., Yam, K. L., & Tomasula, P. M. (2014). Casein films: The effects of formulation, environmental conditions and the addition of citric pectin on the structure and mechanical properties. Polymers, 6(7), 2018–2036. https://doi.org/10.3390/polym6072018

Broyard, C., & Gaucheron, F. (2015). Modifcations of structures and functions of caseins: A scientific and technological challenge. Dairy Science & Technology, 95, 831–862. https://doi.org/10.1007/s13594-015-0220-y

Chen, H., Wang, J., Cheng, Y., Wang, C., Liu, H., Bian, H., Pan, Y., Sun, J., & Han, W. (2019a). Application of protein-based films and coatings for food packaging: A review. Polymers, 11(12), 2039. https://doi.org/10.3390/polym11122039

Chen, R., Zhang, X., Wang, P., Xie, K., Jian, J., Zhang, Y., Zhang, J., Yuan, Y., Na, P., Yi, M., & Xu, J. (2019b). Transparent thermoplastic polyurethane air filters for efficient electrostatic capture of particulate matter pollutants. Nanotechnology, 30, 015703. https://doi.org/10.1088/1361-6528/aae611

Chevalier, E., Assezat, G., Prochazka, F., & Oulahal, N. (2018). Development and characterization of a novel edible extruded sheet based on different casein sources and influence of the glycerol concentration. Food Hydrocolloids, 75, 182–191.

https://doi.org/10.1016/j.foodhyd.2017.08.028

Cortés-Rodríguez, M., Villegas-Yépez, C., Gil González, J. H., Rodríguez, P. E., & Ortega-Toro, R. (2020). Development and evaluation of edible flms based on cassava starch, whey protein, and bees wax. Heliyon, 6(9), e04884. https://doi.org/10.1016/j.heliyon.2020.e04884

Darni, Y., Lismeri, L., Hanif, M., & Putra, N. (2018). Pengaruh bilangan Reynold pada sintesis bioplastik berbasis pati sorgum dan gelatin. Prosiding Seminar Nasional Kulit, Karet, dan Plastik, 7(1), 55–68.

Diastari, I. G. A. F., & Agustina, K. K. (2013). Uji organoleptik dan tingkat keasaman susu sapi kemasan yang dijual di pasar tradisional Kota Denpasar. Indonesia Medicus Veterinus, 2(4), 453–460.

Ditjen PKH. (2019).Statistik peternakan dan kesehatan hewan 2019. Jakarta, Indonesia: Kementerian Pertanian.

Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I., & Mei, L. H. I. (2015). Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated

Red Crimson grapes. Postharvest Biology and Technology, 109, 57–64. https://doi.org/10.1016/j.postharvbio.2015.05.015

Hatmi, R. U., Apriyati, E., & Cahyaningrum, N. (2020). Edible coating quality with three types of starch and sorbitol plasticizer. E3S Web of Conferences, 142, 02003. https://doi.org/10.1051/e3sconf/202014202003

JSA (Japanese Standards Association). (1975). JISZ-1707 General rules of plastic films for food packaging. Tokyo, Jepang: JSA.

Li, C., Pei, J., Zhu, S., Song, Y., Xiong, X., & Xue, F. (2020). Development of chitosan/peptide films: Physical, antibacterial and antioxidant properties. Coatings, 10(12), 1193. https://doi.org/10.3390/coatings10121193

Lindriati, T., Herlina, Naf, A., & Praptiningsih, Y. (2017). Prediction of carbohydrate-protein interaction in cassava starch-casein blended edible flms. Advance Journal of Food Science

and Technology, 13(7), 272–278. https://doi.org/10.19026/ajfst.13.5280

Lindriati, T., Praptiningsih, Y., & Wijayanti, D. F. (2014). Physical characteristics of edible film gel made under various pH and ratio of casein and tapioca. Jurnal Ilmu Dasar, 15(1), 51–58. https://doi.org/10.19184/jid.v15i1.614

Lisitsyn, A., Semenova, A., Nasonova, V., Polishchuk, E., Revutskaya, N., Kozyrev, I., & Kotenkova, E. (2021). Approaches in animal proteins and natural polysaccharides application for food packaging: Edible film production and quality estimation. Polymers, 13(10), 1592. https://doi.org/10.3390/polym13101592

Maruddin, F., Ako, A., Hajrawati, & Taufk, M. (2017). Karakteristik edible film berbahan whey dan kasein yang menggunakan jenis plasticizer berbeda. Jurnal Ilmu dan Teknologi Peternakan, 5(2), 97–101.

Martins, Y. A. A., Ferreira, S. V., Silva, N. M., Sandre, M. F. B., Filho, J. G. O., Leão, P. V. T., Leão, M, K., Nicolau, E. S., Plácido, G. R., Egea, M., B., & da Silva, M. A. P. (2020). Edible films of whey and cassava starch: Physical, thermal, and microstructural characterization.Coatings,10(11), 1059. https://doi.org/10.3390/coatings10111059

Mulyono, N., Suhartono, M. T., & Angelina, S. (2015). Development of bioplastic based on cassava flour and its starch derivatives for food packaging. Journal of Harmonized Research in Applied Sciences, 3(2), 125–132.

Murti, T. W., Rihastuti, & Purnomo, Y. A. (2011). Kajian kualitas fisik, kimia dan sensoris susu pasteurisasi pada pasteurizer berbeda. Prosiding Seminas Competitive Advantage, 1(1), 1–6.

Nurhajati, D. W. (2017). Pembuatan plastik biodegradabel untuk sarung tangan sekali pakai (1 tahun) (Laporan Penelitian). Yogyakarta, Indonesia: Balai Besar Kulit, Karet dan Plastik.

Nurhajati, D. W., Pidhatika, B., & Harjanto, S. (2019). Biodegradable plastics from linier low-density polyethylene and polysaccharide: The influence of polysaccharide and acetic acid. Majalah Kulit, Karet, dan Plastik, 35(1), 33–40. https://doi.org/10.20543/mkkp.v35i1.4874

Nuriyah, L., Saroja, G., Ghufron, M., Razanata, A., & Rosid, N. F. (2018). Karakteristik kuat tarik dan elongasi bioplastik berbahan pati ubi jalar cilembu dengan variasi jenis pemlastis. Natural B, 4(4), 177–182.

O’Chiu, E., & Vardhanabhuti, B. (2017). Utilizing whey protein isolate and polysaccharide complexes to stabilize aerated dairy gels. Journal of Dairy Science, 100(5), 3404–3412. https://doi.org/10.3168/jds.2016-12053

Pellá, M. C. G., Silva, O. A., Pellá, M. G., Beneton, A. G., Caetano, J., Simões, M. R., & Dragunski, D. C. (2020). Effect of gelatin and casein additions on starch edible biodegradable films for fruit surface coating. Food Chemistry, 309, 125764. https://doi.org/10.1016/j.foodchem.2019.125764

Purnomo, H., & Syamsul, E. S. (2017). Statistika farmasi (aplikasi praktis dengan SPSS). Yogyakarta, Indonesia: Grafka Indah.

Rahmawati, A. S., & Erina, R. (2020). Rancangan acak lengkap (RAL) dengan uji anova dua jalur. Optika, 4(1), 54–62. https://doi.org/10.37478/optika.v4i1.333

Rai, S., & Poonia, A. (2019). Formulation and characterization of edible flms from pea starch and casein. Journal of Pharmacognosy and Phytochemistry, 8(2), 317–321.

Riquelme, N., Díaz-Calderón, P., Enrione, J., & Matiacevich, S. (2015). Effect of physical state of gelatin-plasticizer based films on to the occurrence of Maillard reactions. Food Chemistry, 175, 478–484. https://doi.org/10.1016/j.foodchem.2014.12.008

Romuli, S., Abass, A., & Müller, J. (2017). Physical properties of cassava grits before and after pneumatic drying. Journal of Food Process Engineering, 40(2), e12397. https://doi.org/10.1111/jfpe.12397

Ryder, K., Ali, M. A., Billakanti, J., & Carne, A. (2020). Evaluation of dairy co-product containing composite solutions for the formation of bioplastic flms. Journal of Polymers and the Environment, 28, 725–736. https://doi.org/10.1007/s10924-019-01635-4

Sabil, S., Maruddin, F., Wahyuni, T., & Taufk, M. (2021). Edible film characteristics at different casein concentrations. IOP Conference Series: Earth and Environmental Science, 788, 012115. https://doi.org/10.1088/1755-1315/788/1/012115

Saikia, M., & Badwaik, L. S. (2018). Characterization and antimicrobial property of casein, gelatin and pectin based active composite films. Journal of Packaging Technology and Research, 2, 233–242. https://doi.org/10.1007/s41783-018-0044-3

Sarode, A. R., Sawale, P. D., Khedkar, C. D., Kalyankar, S. D., & Pawshe, R. D. (2016). Casein and caseinate: Methods of manufacture. In B. Caballero, P. M. Finglas, F. Toldrá, (Eds.), Encyclopedia of Food and Health (1st ed., pp. 676–682). London, UK: Oxford Academic Press. https://doi.org/10.1016/B978-0-12-384947-2.00122-7

Skurtys, O., Acevedo, C., Pedreschi, F., Enronoe, J., Osorio, F., & Aguilera, J. M. (2011). Food hydrocolloid edible films and coatings. New York, USA: Nova Science Publishers.

Socaciu, M., Fogarasi, M., Semeniuc, C. A., Socaci, S. A., Rotar, M. A., Mureşan, V., Pop, O. L., & Vodnar, D. C. (2020). Formulation and characterization of antimicrobial edible films based on whey protein isolate and tarragon essential oil. Polymers, 12(8), 1748. https://doi.org/10.3390/POLYM12081748

Sucipta, I. N., Suriasih, K., & Kenacana, P. K. D. (2017). Pengemasan pangan: Kajian pengemasan yang aman, nyaman, efektif dan efsien. Denpasar, Indonesia: Udayana University Press.

Suderman, N., Isa, M. I. N., & Sarbon, N. M. (2018). The effect of plasticizers on the functional properties of biodegradable gelatin-based film: A review. Food Bioscience, 24, 111–119. https://doi.org/10.1016/j.fbio.2018.06.006

Thakur, V. K., Thakur, M. K., & Kessler, M. R. (2017). Soy-based bioplastics. Shropshire, UK: Smithers Rappa.

Durmaz, B. U., & Aytac, A. (2019). Poly (vinyl alcohol) and casein films: The effects of glycerol amount on the properties of films. Research on Engineering Structures & Materials, 5(2), 155–165. https://doi.org/10.17515/resm2018.62is0803

Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

Warkoyo, Rahardjo, B., Marseno, D. W., & Karyadi, J. N. W. (2014). Sifat fsik, mekanik dan barrier edible film berbasis pati umbi kimpul (Xanthosoma sagittifolium) yang diinkorporasi dengan kalium sorbat. Agritech, 34(1), 72–81.

Wusigale, Liang, L., & Luo, Y. (2020). Casein and pectin: Structures, interactions, and applications. Trends in Food Science & Technology, 97, 391–403. https://doi.org/10.1016/j.tifs.2020.01.027

Xiao, Y., Luo, H., Tang, R., & Hou, J. (2021). Preparation and applications of electrospun optically transparent fibrous membrane. Polymers, 13(4), 506. https://doi.org/10.3390/polym13040506

Xu, J., & Gowen, A. A. (2019). Investigation of plasticizer aggregation problem in casein based biopolymer using chemical imaging. Talanta, 193, 128–138. https://doi.org/10.1016/j.talanta.2018.09.094

Yuwanti, S., Raharjo, S., Hastuti, P., & Supriyadi. (2012). Mikroemulsi minyak dalam air (o/w) sebagai pembawa α-tokoferol untuk menghambat sunlight flavor pada susu akibat fotooksidasi.

Agritech, 32(2), 179–185.




DOI: http://dx.doi.org/10.20543/mkkp.v37i2.7422

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Ariya Dwi Nugrahanto, Asih Kurniawati, Yuny Erwanto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

MKKP indexed by:

Cover Page Cover Page     Cover Page    Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page    Cover Page    Cover Page    Cover Page     Cover Page     Cover Page   Cover Page   Cover Page   Cover Page   Cover Page              

 

 

 

Free counters!