High-density thermoplastic vulcanizates based on LLDPE/NR for truck floor mats application

Dwi Wahini Nurhajati, Umi Reza Lestari


The use of thermoplastic vulcanizates (TPVs) that was obtained from a blend of thermoplastics and natural rubbers are considered suitable for the automotive applications purpose. To modify the performance of TPVs to a high density TPVs, the high density filler such as bismuth oxide (Bi₂O₃) was added. The focus of this study was on the development of a high density TPVs based on linear low density polyethylene (LLDPE)/natural rubber (NR) blend with different proportions of Bi₂O₃ filler that meets with requirements for truck floor mats materials. The high density TPVs were prepared by melt blending in a Kneader. Bismuth oxide  filler loading was varied by 50; 150; 200; 250 phr and 300 phr. An increase in the weight load of bismuth oxide in TPVs increase density, hardness, and volume loss but reduce the tensile properties, tearing strength, and burning rate of high density TPVs. The test results showed that the TPVs containing 250 phr Bi₂O₃ was a promising candidate for use as a truck floor base.

Full Text:



Abdalsalam, A. H., Şakar, E., Kaky, K. M., Mhareb, M. H. A., Şakar, B. C., Sayyed, M. I., & Gürol, A. (2020). Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites. Radiation Physics and Chemistry, 168, 108537. https://doi.org/10.1016/j.radphyschem.2019.108537

Ali, M. R., R., & Pajarito, B. B. (2018). Effect of thermal aging on hardness and tensile fracture of natural rubber composites based on silica and modifed/raw bentonite fller system. Solid State Science and Technology, 26(1), 1–7.

Al-Mattarneh, H., & Dahim, M. (2019). Physical and mechanical properties of microwave absorber material containing micro and nano barium ferrite. Advanced Materials Letters, 10(4), 259–262. https://doi.org/10.5185/amlett.2019.2226

Ambika, M. R., Nagaiah, N., & Suman, S. K. (2017). Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester based polymer composites. Journal of Applied Polymer Science, 134(13). https://doi.org/10.1002/APP.44657

Arnold, J., Sarkar, K., & Smith, D. (2021). 3D printed bismuth oxide‐polylactic acid composites for radio‐mimetic computed tomography spine phantoms. Journal of Biomedical Materials

Research Part B: Applied Biomaterials, 109(6), 789–796. https://doi.org/10.1002/jbm.b.34744

ASTM (American Standard of Testing Material). (2018). ASTM D635-18 Standard test method for rate of burning and/or extent and time of burning of plastics in a horizontal position. PA, USA: ASTM International. https://doi.org/10.1520/D0635-18

Bhattacharya, A. B., Chatterjee, T., & Naskar, K. (2020). Automotive applications of thermoplastic vulcanizates. Journal of Applied Polymer Science, 137(27), 49181. https://doi.org/10.1002/app.49181

Borowicz, M., Paciorek-Sadowska, J., Lubczak, J., & Czupryński, B. (2019). Biodegradable, flameretardant, and bio-based rigid polyurethane/polyisocyanurate foams for thermal insulation application. Polymers, 11(11), 1816. https://doi.org/10.3390/polym11111816

Datta, J., Kosiorek, P., & Włoch, M. (2016). Effect of high loading of titanium dioxide particles on the morphology, mechanical and thermo‑mechanical properties of the natural rubber‑based composites. Iran Polymer Journal, 25, 1021–1035. https://doi.org/10.1007/s13726-016-0488-7

Elabbasy, M. T., Abd El-Kader, M. F. H., Ismail, A. M., & Menazea, A. A. (2021). Regulating the function of bismuth (III) oxide nanoparticles scattered in Chitosan/Poly (Vinyl Pyrrolidone) by laser ablation on electrical conductivity characterization and antimicrobial activity. Journal of Materials Research and Technology, 10, 1348–1354. https://doi.org/10.1016/j.jmrt.2020.12.109

El-Fiki, S., El Kameesy, S. U., El Nashar, D. E., Abou-Leila, M. A., El-Mansy, M. K., & Ahmed, M. (2015). Influence of bismuth contents on mechanical and gamma ray attenuation properties of silicone rubber composite. International Journal of Advanced Research, 3(6), 1035–1039.

ISO (International Organization for Standardization). (2015). ISO 34-1:2015(en): Rubber, vulcanized or thermoplastic — Determination of tear strength — Part 1: Trouser, angle and crescent test pieces. Geneva, Switzerland: ISO.

ISO (International Organization for Standardization). (2017a). ISO 37:2017(en): Rubber vulcanized or thermoplastic – Determination of tensile stress strain properties. Geneva, Switzerland: ISO.

ISO (International Organization for Standardization). (2017b). ISO 4649:2017(en): Rubber, vulcanized or thermoplastic — Determination of abrasion resistance using a rotating cylindrical drum device. Geneva, Switzerland: ISO.

ISO (International Organization for Standardization). (2018a). ISO 48-4:2018(en): Rubber vulcanized or thermoplastic – Determination of hardness – Part 4: Indentation hardness by durometer method (Shore hardness). Geneva, Switzerland: ISO.

ISO (International Organization for Standardization). (2018b). ISO 2781:2018(en): Rubber, vulcanized or thermoplastic — Determination of density (Method A). Geneva, Switzerland: ISO.

Jagdale, P., Salimpour, S., Islam, M. H., Cuttica, F., Hernandez, F. C. R., Tagliaferro1, A., & Frache, A. (2018). Flame retardant effect of nano fillers on polydimethylsiloxane composites. Journal of Nanoscience and Nanotechnology, 18(2), 1468–1473. https://doi.org/10.1166/jnn.2018.15251

Jagdale, P., Serino, G., Oza, G., Audenino, A. L., Bignardi, C., Tagliaferro, A., & Alvarez-Gayosso, C. (2021). Physical characterization of bismuth oxide nanoparticle based ceramic composite for future biomedical application. Materials, 14(7), 1626. https://doi.org/10.3390/ma14071626

Li, Y., Liu, X., Hu, X., & Luo, W. (2015). Changes in tensile and tearing fracture properties of carbonblack flled rubber vulcanizates by thermal aging. Polymers for Advanced Technologies, 26(11), 1331–1335. https://doi.org/10.1002/pat.3683

Lopattananon, N., Walong, A., Kaesaman, A., & Sakai, T. (2019). Mechanical, thermal and fire retardant characteristics of NR/PP/ATH thermoplastic vulcanizates. Walailak Journal of Science and Technology, 16(10), 723–737. https://doi.org/10.48048/wjst.2019.4436

Mrówka, M., Woźniak, S., Prężyna, S., & Sławski, S. (2021). The influence of zinc waste filler on the tribological and mechanical properties of silicone-based composites. Polymers, 13(4), 585. https://doi.org/10.3390/polym13040585

Mysiukiewicz, O., Kosmela, P., Barczewski, M., & Hejna, A. (2020). Mechanical, thermal and rheological properties of polyethylene-based composites flled with micrometric aluminum powder. Materials, 13(5), 1242. https://doi.org/10.3390/ma13051242

Onuoha, C., Onyemaobi, O. O., Anyakwo, C. N., & Onuegbu, G. C. (2017). Effect of filler loading and particle size on the mechanical properties of periwinkle shell-filled recycled polypropylene composites. American Journal of Engineering Research, 6(4), 72–79.

Park, E. (2013). Effects of thermal and solvent aging on breakdown voltage of TPE, PBT/PET alloy, and PBT insulated low voltage electric wire. Journal of Polymers, 2013, 1–11, 493731. https://doi.org/10.1155/2013/493731

Pavlenko, V. I., Cherkashina, N. I., & Yastrebinsky, R. N. (2019). Synthesis and radiation shielding properties of polyimide/Bi2O3 composites. Heliyon, 5(5), E01703. https://doi.org/10.1016/j.heliyon.2019.e01703

Poltabtim, W., Wimolmala, E., & Saenboonruang, K. (2018). Properties of lead-free gamma-ray shielding materials from metal oxide/EPDM rubber composites. Radiation Physics and Chemistry, 153, 1–9. https://doi.org/10.1016/j.radphyschem.2018.08.036

Scheepens, J. P. (2016). How to select and process high-density thermoplastic materials. Plastic Technology Online Magazine, March.

Sheela, M., Kamat, V. A., Kiran, K. U., & Eshwarappa, K. M. (2019). Preparation and characterization of bismuth-filled high-density polyethylene composites for gamma-ray shielding. Radiation Protection and Environment, 42(4), 180–186. https://doi.org/10.4103/rpe.RPE_29_19

Singh, S., Sahoo, R. K., Shinde, N. M., Yun, J. M., Mane, R. S., & Kim, K. H. (2019). Synthesis of Bi2O3-MnO2 nanocomposite electrode for wide-potential window high performance supercapacitor. Energies, 12(17), 3320. https://doi.org/10.3390/en12173320

Toyen, D., Rittirong, A., Poltabtim, W., & Saenboonruang, K. (2018). Flexible, lead‑free, gamma‑shielding materials based on natural rubber/metal oxide composites. Iranian Polymer Journal, 27, 33–41. https://doi.org/10.1007/s13726-017-0584-3

Wickramaarachchi, W. V. W. H., Walpalage, S., & Egodage, S. M. (2020). Effect of particulate fillers on natural rubber/high-density polyethylene blends for roofing application. Polymers and Polymer Composite, 29(6), 763–769. https://doi.org/10.1177/0967391120934615

Yuhaida, I., Salmah, H., Hanafi, I. & Firuz, Z. (2016). The effect of acrylic acid on tensile and morphology properties of wollastonite filled high density polyethylene/natural rubber composites. Procedia Chemistry, 19, 401–405. https://doi.org/10.1016/j.proche.2016.03.030

DOI: http://dx.doi.org/10.20543/mkkp.v37i2.7159


  • There are currently no refbacks.

Copyright (c) 2021 Dwi Wahini Nurhajati, Umi Reza Lestari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


MKKP indexed by:

Cover Page Cover Page     Cover Page    Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page    Cover Page    Cover Page    Cover Page     Cover Page     Cover Page   Cover Page   Cover Page   Cover Page   Cover Page              




Free counters!