Korelasi antara sistem vulkanisasi dengan sifat mekanis dan sifat redaman vulkanisat karet butil tanpa pengisi

Adi Cifriadi, Asron Ferdian Falaah, Santi Puspitasari

Abstract


Sifat peredaman karet butil dipengaruhi banyaknya ikatan silang, jenis dan jumlah bahan pengisi yang digunakan. Pada penelitian ini karet butil dikompon tanpa menggunakan pengisi karena pengisi memberikan efek yang bervariasi terhadap sifat material yang dihasilkan. Kompon dibuat dengan sistem vulkanisasi belerang konvensional, semi efsien dan efsien dengan variasi perbandingan sulfur dan pencepat. Sifat mekanis vulkanisat diuji kekerasan, kekuatan tarik, perpanjangan putus, ketahanan sobek, kepegasan pantul, dan pampatan tetap. Pengujian mekanik sifat peredaman dilakukan pada regangan 100% dengan loop empat kali. Hasil uji sistem vulkanisasi konvensional memberikan nilai tertinggi untuk kekerasan (30 shore A), kuat sobek (13 N/mm), kepegasan pantul (24%), dan pampatan tetap (13%). Sedangkan sistem vulkanisasi efsien memberikan nilai maksimum untuk kuat tarik (3 MPa), dan perpanjangan putus (960%). Sifat peredaman diwakili oleh kekakuan dan modulus geser, dimana nilai tertinggi diberikan oleh sistem vulkanisasi semi-efsien. Nilai tertinggi secara berurutan, yaitu 26,5049 N/mm dan 0,2120 MPa.

Full Text:

PDF

References


ASTM (American Society for Testing and Materials). (2007). ASTM D1054-02 Test method for rubber property – Resilience using a Goodyear – Healey rebound pendulum. Pennsylvania, USA: ASTM.

ASTM (American Society for Testing and Materials). (2012). ASTM D624-00 Standard test method for tear strength of conventional vulcanized rubber and thermoplastic elastomers. Pennsylvania, USA: ASTM.

ASTM (American Society for Testing and Materials). (2015). ASTM D2240-15 Standard test method for rubber property – Durometer hardness. Pennsylvania, USA: ASTM.

ASTM (American Society for Testing and Materials). (2016). ASTM D395 Standard test methods for rubber property – Compression set. Pennsylvania, USA: ASTM.

ASTM (American Society for Testing and Materials). (2016). ASTM D412-16 Standard test methods for vulcanized rubber and thermoplastic elastomers – Tension. Pennsylvania, USA: ASTM.

ASTM (American Society for Testing and Materials). (2017). ASTM D2084-17 Standard test method for rubber property – Vulcanization using oscillating disk cure meter. Pennsylvania, USA: ASTM.

BSN (Badan Standardisasi Nasional). (2015). SNI ISO 37:2015 Karet, vulkanisat atau termoplastik - Penentuan sifat-sifat tegangan-regangan (ISO 37:2011, IDT). Jakarta, Indonesia: BSN.

Budiono, B., & Setiawan, A. (2014). Studi komparasi sistem isolasi dasar high-damping rubber bearing dan friction pendulum system pada bangunan beton bertulang. Jurnal Teknik Sipil, 21(3), 179–196. https://doi.org/10.5614/jts.2014.21.3.1

CEN (European Committee for Standardization). (2018). EN 15129:2018 Anti-seismic devices. Brussels, Belgia: CEN.

Chung, W. J., Yun, C. B., Kim, N. S., & Seo, J. W. (1999). Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structure. Engineering Structure, 21(4), 365–379. https://doi.org/10.1016/S0141-0296(97)00211-3

Fu, G., Chang, X., Mao, J., & Shi, X. (2016). Insights into the reinforcement of butyl rubber by carbon black and silica with the aid of their dynamic properties. Journal of Macromolecular Science, 55(9), 925–936. https://doi.org/10.1080/00222348.2016.1217760

Hidayat, A. S., Arti, D. K., Wisojodharmo, L. A., Harahap, M. E., & Susanto, H. (2019). Effect of peptizer in mastication process of natural rubber/butadiene rubber blending: Rheological and mechanical properties. International Journal of Engineering & Scientifc Research, 7(7), 16–22.

Hilmi, A. R., & Pratapa, S. (2016). Sifat termomekanik komposit PEG/SiO2 amorf menggunakan Dynamic Mechanical Analyzer (DMA). Jurnal Sains dan Seni ITS, 5(2), B-125–128.

Koupai, S. A., Bakhshi, A., & Tabrizi, V. V. (2017). Experimental investigation on effects of elastomer components on dynamic and mechanical properties in seismic isolator compounds. Construction and Building Materials, 135, 267–278. https://doi.org/10.1016/j.conbuildmat.2016.12.184

Kruželák, J., Sýkora, R., & Hudec, I. (2016). Sulphur and peroxide vulcanisation of rubber compounds – Overview. Chemical Papers, 70, 1533–1555. https://doi.org/10.1515/chempap-2016-0093

Lei, T., Zhang, Y.-W., Kuang, D.-L., & Yang, Y.-R. (2019). Preparation and properties of rubber blends for high damping isolation bearing. Polymers, 11(8), 1374. https://doi.org/10.3390/polym11081374

Li, C., Xu, S.-A., Xiao, F.-Y., & Wu, C.-F. (2006). Dynamic mechanical properties of chlorinated butyl rubber blends. European Polymer Journal, 42(10), 2507–2514. https://doi.org/10.1016/j.eurpolymj.2006.06.004

Li, J.-C., Zhang, H.-S., Zhao, X.-Y., Jiang, J.-G., Wu, Y.-X., Lu, Y.-L., Zhang, L,-Q, & Nishi, T. (2019). Development of high damping natural rubber/butyl rubber composite compatibilized by isobutyleneisoprene block copolymer for isolation bearing. Express Polymer Letters, 13(8), 686–696. https://doi.org/10.3144/expresspolymlett.2019.58

Ngamsurat, S., Boonkerd, K., Leela-adisorn, U., & Potiyaraj, P. (2011). Curing characteristic of natural rubber flled with gypsum. Energy Procedia, 9, 452–458. https://doi.org/10.1016/j.egypro.2011.09.051

Novianti, Widhiyanti, S., & Sukamdo, P. (2015). Pembuatan benda uji base-isolation untuk rumah sederhana tahan gempa. Rekayasa Sipil, 4(2), 97–107.

Reshmy, R., Thomas, K. K., & Sulekha, A. (2012). N-benzoyl-N’N’-disubstituted thioureas – A new binary accelerator system and its effect of nucleophilicity in sulfur vulcanization of natural rubber. Journal of Applied Polymer Science, 124(2), 978–984. https://doi.org/10.1002/app.35144

Saputra, D. A., Husin, S., Gumelar, M. D., Aisiah, N., Susanto, H., Admi, R. I., & Anindita, G. L. (2020). Preparation and characterization of hard rubber and soft rubber for marine rubber fender. Macromolecular Symposia, 391(1), 1900189. https://doi.org/10.1002/masy.201900189

Setio, H. D., Kusumastuti, D., Setio, S., Siregar, P. H. R., & Hartanto, A. (2012). Pengembangan sistem isolasi seismik pada struktur bangunan yang dikenai beban gempa sebagai solusi untuk membatasi respon struktur. Jurnal Teknik Sipil, 19(1), 1–14. https://doi.org/10.5614/jts.2012.19.1.1

Shi, X., Jia, L., Ma, Y., & Li, C. (2016). Effect of fillers on the damping properties of ethylene vinyl-acetate/polylactic acid blend. Journal of Materials Science and Chemical Engineering, 4(2), 89–96. https://doi.org/10.4236/msce.2016.42010

Tamási, K., & Kollár, M. S. (2018). Effect of different sulfur content in natural rubber mixtures on their thermo-mechanical and surface properties. International Journal of Engineering Research & Science, 4(2), 28–37. https://doi.org/10.5281/zenodo.1187676

Thiranan, T. (2007). Utilization of various filler for rubber mat development (Tesis). Kasetsart University, Thailand.

Vitiello, R., Tesser, R., Turco, R., Santacesaria, E., Compagnone, G., & Di Serio, M. (2017). A critical review on analytical methods and characterization of butyl and bromobutyl rubber. International Journal of Polymer Analysis and Characterization, 22(4), 348–360. https://doi.org/10.1080/1023666X.2017.1297887

Wadha, A. (2012). Measuring the rebound resilience of a bouncing ball. Physics Education, 47(5), 620–626. https://doi.org/10.1088/0031-9120/47/5/620

Wang, W., Zhao, D., Yang, J., Nishi, T., Ito, K., Zhao, X., & Zhang, L. (2016). Novel slide-ring material/natural rubber composites with high damping property. Scientifc Report, 6, 22810. https://doi.org/10.1038/srep22810

Warn, G. P., Whittaker, A. S., & Constantinou, M. C. (2007). Vertical stiffness of elastomeric and lead-rubber seismic isolation bearings. Journal of Structural Engineering, 133(9), 1227–1236. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1227)

Xia, L., Li, C., Zhang, X., Wang, J., Wu, H., & Guo, S. (2018). Effect of chain length of polyisobutylene oligomers on the molecular motion modes of butyl rubber: Damping property. Polymer, 141, 70–78. https://doi.org/10.1016/j.polymer.2018.03.009

Yuan, Y., Wei, W., Tan, P., Iragashi, A., Zhu, H., Iemura, H., & Aoki, T. (2016). A rate-dependent constitutive model of high damping rubber bearings: Modeling and experimental verifcation. Earthquake Engineering & Structural Dynamics, 45(11), 1875–1892. https://doi.org/10.1002/eqe.2744




DOI: http://dx.doi.org/10.20543/mkkp.v37i2.7042

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Adi Cifriadi, Asron Ferdian Falaah, Santi Puspitasari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

MKKP indexed by:

Cover Page Cover Page     Cover Page    Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page    Cover Page    Cover Page    Cover Page     Cover Page     Cover Page   Cover Page   Cover Page   Cover Page   Cover Page              

 

 

 

Free counters!