Korelasi antara sistem vulkanisasi dengan sifat mekanis dan sifat redaman vulkanisat karet butil tanpa pengisi
Abstract
Full Text:
PDFReferences
ASTM (American Society for Testing and Materials). (2007). ASTM D1054-02 Test method for rubber property – Resilience using a Goodyear – Healey rebound pendulum. Pennsylvania, USA: ASTM.
ASTM (American Society for Testing and Materials). (2012). ASTM D624-00 Standard test method for tear strength of conventional vulcanized rubber and thermoplastic elastomers. Pennsylvania, USA: ASTM.
ASTM (American Society for Testing and Materials). (2015). ASTM D2240-15 Standard test method for rubber property – Durometer hardness. Pennsylvania, USA: ASTM.
ASTM (American Society for Testing and Materials). (2016). ASTM D395 Standard test methods for rubber property – Compression set. Pennsylvania, USA: ASTM.
ASTM (American Society for Testing and Materials). (2016). ASTM D412-16 Standard test methods for vulcanized rubber and thermoplastic elastomers – Tension. Pennsylvania, USA: ASTM.
ASTM (American Society for Testing and Materials). (2017). ASTM D2084-17 Standard test method for rubber property – Vulcanization using oscillating disk cure meter. Pennsylvania, USA: ASTM.
BSN (Badan Standardisasi Nasional). (2015). SNI ISO 37:2015 Karet, vulkanisat atau termoplastik - Penentuan sifat-sifat tegangan-regangan (ISO 37:2011, IDT). Jakarta, Indonesia: BSN.
Budiono, B., & Setiawan, A. (2014). Studi komparasi sistem isolasi dasar high-damping rubber bearing dan friction pendulum system pada bangunan beton bertulang. Jurnal Teknik Sipil, 21(3), 179–196. https://doi.org/10.5614/jts.2014.21.3.1
CEN (European Committee for Standardization). (2018). EN 15129:2018 Anti-seismic devices. Brussels, Belgia: CEN.
Chung, W. J., Yun, C. B., Kim, N. S., & Seo, J. W. (1999). Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structure. Engineering Structure, 21(4), 365–379. https://doi.org/10.1016/S0141-0296(97)00211-3
Fu, G., Chang, X., Mao, J., & Shi, X. (2016). Insights into the reinforcement of butyl rubber by carbon black and silica with the aid of their dynamic properties. Journal of Macromolecular Science, 55(9), 925–936. https://doi.org/10.1080/00222348.2016.1217760
Hidayat, A. S., Arti, D. K., Wisojodharmo, L. A., Harahap, M. E., & Susanto, H. (2019). Effect of peptizer in mastication process of natural rubber/butadiene rubber blending: Rheological and mechanical properties. International Journal of Engineering & Scientifc Research, 7(7), 16–22.
Hilmi, A. R., & Pratapa, S. (2016). Sifat termomekanik komposit PEG/SiO2 amorf menggunakan Dynamic Mechanical Analyzer (DMA). Jurnal Sains dan Seni ITS, 5(2), B-125–128.
Koupai, S. A., Bakhshi, A., & Tabrizi, V. V. (2017). Experimental investigation on effects of elastomer components on dynamic and mechanical properties in seismic isolator compounds. Construction and Building Materials, 135, 267–278. https://doi.org/10.1016/j.conbuildmat.2016.12.184
Kruželák, J., Sýkora, R., & Hudec, I. (2016). Sulphur and peroxide vulcanisation of rubber compounds – Overview. Chemical Papers, 70, 1533–1555. https://doi.org/10.1515/chempap-2016-0093
Lei, T., Zhang, Y.-W., Kuang, D.-L., & Yang, Y.-R. (2019). Preparation and properties of rubber blends for high damping isolation bearing. Polymers, 11(8), 1374. https://doi.org/10.3390/polym11081374
Li, C., Xu, S.-A., Xiao, F.-Y., & Wu, C.-F. (2006). Dynamic mechanical properties of chlorinated butyl rubber blends. European Polymer Journal, 42(10), 2507–2514. https://doi.org/10.1016/j.eurpolymj.2006.06.004
Li, J.-C., Zhang, H.-S., Zhao, X.-Y., Jiang, J.-G., Wu, Y.-X., Lu, Y.-L., Zhang, L,-Q, & Nishi, T. (2019). Development of high damping natural rubber/butyl rubber composite compatibilized by isobutyleneisoprene block copolymer for isolation bearing. Express Polymer Letters, 13(8), 686–696. https://doi.org/10.3144/expresspolymlett.2019.58
Ngamsurat, S., Boonkerd, K., Leela-adisorn, U., & Potiyaraj, P. (2011). Curing characteristic of natural rubber flled with gypsum. Energy Procedia, 9, 452–458. https://doi.org/10.1016/j.egypro.2011.09.051
Novianti, Widhiyanti, S., & Sukamdo, P. (2015). Pembuatan benda uji base-isolation untuk rumah sederhana tahan gempa. Rekayasa Sipil, 4(2), 97–107.
Reshmy, R., Thomas, K. K., & Sulekha, A. (2012). N-benzoyl-N’N’-disubstituted thioureas – A new binary accelerator system and its effect of nucleophilicity in sulfur vulcanization of natural rubber. Journal of Applied Polymer Science, 124(2), 978–984. https://doi.org/10.1002/app.35144
Saputra, D. A., Husin, S., Gumelar, M. D., Aisiah, N., Susanto, H., Admi, R. I., & Anindita, G. L. (2020). Preparation and characterization of hard rubber and soft rubber for marine rubber fender. Macromolecular Symposia, 391(1), 1900189. https://doi.org/10.1002/masy.201900189
Setio, H. D., Kusumastuti, D., Setio, S., Siregar, P. H. R., & Hartanto, A. (2012). Pengembangan sistem isolasi seismik pada struktur bangunan yang dikenai beban gempa sebagai solusi untuk membatasi respon struktur. Jurnal Teknik Sipil, 19(1), 1–14. https://doi.org/10.5614/jts.2012.19.1.1
Shi, X., Jia, L., Ma, Y., & Li, C. (2016). Effect of fillers on the damping properties of ethylene vinyl-acetate/polylactic acid blend. Journal of Materials Science and Chemical Engineering, 4(2), 89–96. https://doi.org/10.4236/msce.2016.42010
Tamási, K., & Kollár, M. S. (2018). Effect of different sulfur content in natural rubber mixtures on their thermo-mechanical and surface properties. International Journal of Engineering Research & Science, 4(2), 28–37. https://doi.org/10.5281/zenodo.1187676
Thiranan, T. (2007). Utilization of various filler for rubber mat development (Tesis). Kasetsart University, Thailand.
Vitiello, R., Tesser, R., Turco, R., Santacesaria, E., Compagnone, G., & Di Serio, M. (2017). A critical review on analytical methods and characterization of butyl and bromobutyl rubber. International Journal of Polymer Analysis and Characterization, 22(4), 348–360. https://doi.org/10.1080/1023666X.2017.1297887
Wadha, A. (2012). Measuring the rebound resilience of a bouncing ball. Physics Education, 47(5), 620–626. https://doi.org/10.1088/0031-9120/47/5/620
Wang, W., Zhao, D., Yang, J., Nishi, T., Ito, K., Zhao, X., & Zhang, L. (2016). Novel slide-ring material/natural rubber composites with high damping property. Scientifc Report, 6, 22810. https://doi.org/10.1038/srep22810
Warn, G. P., Whittaker, A. S., & Constantinou, M. C. (2007). Vertical stiffness of elastomeric and lead-rubber seismic isolation bearings. Journal of Structural Engineering, 133(9), 1227–1236. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1227)
Xia, L., Li, C., Zhang, X., Wang, J., Wu, H., & Guo, S. (2018). Effect of chain length of polyisobutylene oligomers on the molecular motion modes of butyl rubber: Damping property. Polymer, 141, 70–78. https://doi.org/10.1016/j.polymer.2018.03.009
Yuan, Y., Wei, W., Tan, P., Iragashi, A., Zhu, H., Iemura, H., & Aoki, T. (2016). A rate-dependent constitutive model of high damping rubber bearings: Modeling and experimental verifcation. Earthquake Engineering & Structural Dynamics, 45(11), 1875–1892. https://doi.org/10.1002/eqe.2744
DOI: http://dx.doi.org/10.20543/mkkp.v37i2.7042
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Adi Cifriadi, Asron Ferdian Falaah, Santi Puspitasari

This work is licensed under a Creative Commons Attribution 4.0 International License.
MKKP indexed by: