Characterization of ethylene–vinyl acetate (EVA)/modified starch expanded compounds for outsole material
Abstract
The use of non-biodegradable material in shoe components has negative impacts on environmental sustainability when disposed into landfills due to poor biodegradability. This study prepared ethylene–vinyl acetate (EVA)/modified starch expanded compounds as outsole material to overcome environmental pollution. This research aimed to investigate the effects of EVA/modified starch ratio on the properties of the compound. Ethylene-vinyl acetate (EVA) copolymer was blended with a modified cassava starch in various amounts (10-50 phr) using a two-roll mill. Effect of modified starch content was characterized its tensile strength, elongation at break, tearing strength, 50% permanent set, density, abrasion resistance, flex resistance, biodegradability, and morphology. The optimum value of tensile strength (61.33 kg/cm²), elongation at break (895%), and tear strength (16.62 N/mm) were obtained for samples containing 20 phr modified starch. The EVA compound containing 30 phr of starch showed the optimum 50% permanent set (4.85%) and the highest abrasion resistance with the smallest volume loss of 439.99 mm³. The addition of modified starch up to 50 phr provided good flexural resistance to 150000 number of cycles. The morphology image showed that distribution of modified starch particles was not homogeneously dispersed in the EVA/modified starch expanded compound. Incorporation of modified starch in EVA compound was improving its biodegradability.
Full Text:
PDFReferences
Abdullah, Z., & Ibrahim, K. M. Y. K.(2014). Electrical tracking performance of thermoplastic elastomer nanocomposites material under high voltage application. International Journal of Scientific & Engineering Research, 5(12), 708–711.
Ali, R. R., Rahman, W. A. W. A., Kasmani, R. M., Ibrahim, N., Mustapha, S. N. H., & Hasbullah, H. (2013). Tapioca starch biocomposite for disposable packaging ware. Chemical Engineering Transactions, 32, 1711–1716. https://doi.org/10.3303/CET1332286
Arayapranee, W. (2012). Rubber abrasion resistance. In M. Adamiak (Ed.), Abrasion resistance of materials (pp. 147–166). https://doi.org/10.5772/30556
Ayu, R. S., Khalina, A., Harmaen, A. S., Zaman, K., Jawaid, M., & Lee, C. H. (2018). Effect of modified tapioca starch on mechanical, thermal, and morphological properties of PBS blends for food packaging. Polymers, 10(11), 1187. https://doi.org/10.3390/polym10111187
BSN (Badan Standardisasi Nasional). (2009). SNI 0778:2009 Sol karet cetak. Jakarta, Indonesia: BSN.
Dias, R. B., Coto, N. P., Batalha, G. F., & Driemeier, L. (2018). Systematic study of ethylene-vinyl acetate (EVA) in the manufacturing of protector devices for the orofacial system. In L. A. Dobrzański (Ed.), Biomaterials in regenerative medicine. https://doi.org/10.5772/intechopen.69969
Da Róz, A. L., Ferreira, A. M., Yamaji, F. M., & Carvalho, A. J. F. (2012). Compatible blends of thermoplastic starch and hydrolyzed ethylene-vinyl acetate copolymers. Carbohydrate Polymer, 90(1), 34–40. https://doi.org/10.1016/j.carbpol.2012.04.055
Diani, J., Fayolle, B., & Gilormini, P. (2009). A review on the Mullins effect. European Polymer Journal, 45(3), 601–612. https://doi.org/10.1016/j.eurpolymj.2008.11.017
Ferreira, E. J., Dias, M. M., & Schneider, E. L. (2018). Analysis of non-uniform expansion behavior of injected EVA. Academic Journal of Polymer Science, 1(4), 61–65. https://doi.org/10.19080/AJOP.2018.01.555569
Gautam, N., & Kaur, I. (2013). Soil burial biodegradation studies of starch grafted polyethylene and identification of Rhizobium meliloti therefrom. Journal of Environmental Chemistry and Ecotoxicology, 5(6), 147–158.
Guo, Y., Hao, X., & Liang, G. (2021). Modification and properties of EVA foamed material with hemp stem powder. Journal of Physics: Conference Series, 1759, 012013. https://doi.org/10.1088/1742-6596/1759/1/012013
Hamadache, H., Djidjelli, H., Boukerrou, A., Kaci, M., Jofre-Reche, J. A., & Martín-Martínez, J. M. (2019). Different compatibility approaches to improve the thermal and mechanical properties of EVA/starch composites. Polymer Composites, 40, 3242–3253. https://doi.org/10.1002/pc.25179
ISO (International Standard Organization). (2015). ISO 34-1:2015(E) Rubber, vulcanized or thermoplastic — Determination of tear strength — Part 1: Trouser, angle, and crescent test pieces. Geneva, Switzerland: International Standard Organization.
ISO (International Standard Organization). (2017). ISO 37:2017(E) Rubber vulcanized or thermoplastic – Determination of tensile stress-strain properties. Geneva, Switzerland: International Standard Organization.
ISO (International Standard Organization). (2018). ISO 2781:2018(E) Rubber, vulcanized or thermoplastic — Determination of density (Method A). Geneva, Switzerland: International Standard Organization.
Lopes, D., Ferreira, M. J., Russo, R., & Dias, J. M. (2015). Natural and synthetic rubber/waste-ethylene-vinyl acetate composites for sustainable application in the footwear industry. Journal of Cleaner Production, 92, 230–236. https://doi.org/10.1016/j.jclepro.2014.12.063
Maran, J. P., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2014). Degradation behavior of bioreactive blends based on cassava starch buried under indoor compost conditions. Carbohydrate Polymer, 101, 20–28. https://doi.org/10.1016/j.carbpol.2013.08.080
Mendes, J. F., Paschoalin, R. T., Carmona, V. B., Neto, A. R. S., Marques, A. C. P., Marconcini, J. M., Mattoso, L. H. C., Medeiros, E. S., & Oliveira, J. E. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452–458. https://doi.org/10.1016/j.carbpol.2015.10.093
Mohamad Aini, N. A., Othman, N., Hussin, M., Sahakaro, K., & Hayeemasae, N. (2019). Hydroxymethylation-modified lignin and its effectiveness as a filler in rubber composites. Processes, 7(5), 315. https://doi.org/10.3390/pr7050315
Macedo, J. R. N., & Rosa, D. S. (2015). Effect of fiber and starch incorporation in biodegradation of PLA-TPS-Cotton composites. Key Engineering Materials, 668, 54–62. https://doi.org/10.4028/www.scientific.net/KEM.668.54
Nautiyal, O. H. (2012). Molding of EVA soles using expanding and reducing agents. International Journal of Engineering Science and Technology, 4(7), 3050–3058.
Obasi, H. C., & Igwe, I. O. (2014). Cassava starch-mixed polypropylene biodegradable polymer: Preparation, characterization, and effects of biodegradation products on growth of plants. International Journal of Science and Research, 3(7), 802–807.
Onodera, A. N., Neto, W. P. G., Roveri, M. I., Oliveira, W. R., & Sacco, I. C. N. (2017). Immediate effects of EVA midsole resilience and upper shoe structure on running biomechanics: A machine learning approach. PeerJ., 5, e3026. https://doi.org/10.7717/peerj.3026
Rodriguez-Perez, M. A., Simoes, R. D., Roman-Lorza, S., Alvarez-Lainez, M., Montoya-Mesa, C., Constantino, C. J. L., & de Saja, J. A. (2012). Foaming of EVA/starch blends: Characterization of the structure, physical properties, and biodegradability. Polymer Engineering and Science, 52(1), 62–70. https://doi.org/10.1002/pen.22046
Sessini, V., Arrieta, M. P., Raquez, J. M., Dubois, P., Kenny, J. M., & Peponi, L. (2019). Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 159, 184–198. https://doi.org/10.1016/j.polymdegradstab.2018.11.025
Sisanth, K. S., Thomas, M. G., Abraham, J., & Thomas, S. (2017). General introduction to rubber compounding. In S. Thomas, & H. J. Maria (Eds.), Progress in rubber nanocomposites (pp. 1–39). https://doi.org/10.1016/B978-0-08-100409-8.00001-2
Tanase, E. E., Popa, M. E., Rapa, M., Popa, O., & Popa, I. V. (2016). Biodegradation study of some food packaging biopolymers based on PVA. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 73(1), 89–94. https://doi.org/10.15835/buasvmcn-asb:11948
Tang, L. C., Zhao, L., Qiang, F., Wu, Q., Gong, L. X., & Peng, J. P. (2019). Mechanical properties of rubber nanocomposites containing carbon nanofillers. In S. Yaragalla, R. K. Mishra, S. Thomas, N. Kalarikkal, & H. J. Maria (Eds.), Carbon-based nanofillers and their rubber nanocomposites: Fundamentals and applications (pp. 367–423). https://doi.org/10.1016/B978-0-12-817342-8.00012-3
Valle, V., Encalada, K., Aldás, M. B., & Proaño, E. (2018). An overview of starch-based biopolymers and their biodegradability. Ciencia e Ingeniería, 39(3), 245–258.
Wang, L., Hong, Y., & Li, J. X. (2012). Durability of running shoes with ethylene vinyl acetate or polyurethane midsoles. Journal of Sports Sciences, 30(16), 1787–1792. https://doi.org/10.1080/02640414.2012.723819
Zimmermann, M. V. G., Turellaa, T., Santana, R. M. C., & Zattera, A. J. (2014). Comparative study between poly(ethylene-co-vinyl acetate)-EVA expanded composites filled with banana fiber and wood flour. Materials Research, 17, 1535–1544.
DOI: http://dx.doi.org/10.20543/mkkp.v37i1.6916
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Dwi Wahini Nurhajati, Umi Reza Lestari, Gunawan Priambodo

This work is licensed under a Creative Commons Attribution 4.0 International License.
MKKP indexed by: