Properties of microfibrillar cellulose filled thermoplastic natural rubber: Morphology, mechanical properties, and melt flow index
Abstract
Full Text:
PDFReferences
Abdelmouleh, M., Boufi, S., Belgacem, M. N., & Dufresne, A. (2007). Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading. Composites Science and Technology, 67(7–8), 1627–1639. https://doi.org/10.1016/j.compscitech.2006.07.003
Anandhan, S., & Bhowmick, A. K. (2013). Thermoplastic vulcanizates from post consumer computer plastics/nitrile rubber blends by dynamic vulcanization. Journal of Material Cycles and Waste Management, 15(3), 300–309. https://doi.org/10.1007/s10163-012-0112-7
Anuar, H., Wan Busu, W. N., Ahmad, S. H., & Rasid, R. (2008). Reinforced thermoplastic natural rubber hybrid composites with Hibiscus cannabinus, L and short glass fiber - Part I: Processing parameters and tensile properties. Journal of Composite Materials, 42(11), 1075–1087. https://doi.org/10.1177/0021998308090450
Anuar, H., & Zuraida, A. (2011). Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fibre. Composites Part B: Engineering, 42(3), 462–465. https://doi.org/10.1016/j.compositesb.2010.12.013
Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. R., & Hoque, M. E. (2015). A review on pineapple leaves fibre and its composites. International Journal of Polymer Science, 2015, 1–17. https://doi.org/10.1155/2015/950567
Bahruddin, Ahmad, A., Prayitno, A., & Satoto, R. (2012). Morphology and mechanical properties of palm based fly ash reinforced dynamically vulcanized natural rubber/polypropylene blends. Procedia Chemistry, 4, 146–153. https://doi.org/DOI 10.1016/j.proche.2012.06.021
Bendjaouahdou, C., & Bensaad, S. (2013). The effects of organoclay on the morphology and balance properties of an immiscible polypropylene/natural rubber blend. Energy Procedia, 36, 574–590. https://doi.org/10.1016/j.egypro.2013.07.066
Bendjaouahdou, C., & Bensaad, S. (2018). Aging studies of a polypropylene and natural rubber blend. International Journal of Industrial Chemistry, 9(4), 345–352. https://doi.org/10.1007/s40090-018-0163-2
Benmesli, S., & Riahi, F. (2014). Dynamic mechanical and thermal properties of a chemically modified polypropylene/natural rubber thermoplastic elastomer blend. Polymer Testing, 36, 54–61. https://doi.org/10.1016/j.polymertesting.2014.03.016
Bukit, N., & Frida, E. (2013). The effect zeolite addition in natural rubber polypropylene composite on mechanical, structure, and thermal characteristics. Makara Journal of Technology, 17(3), 113–120. https://doi.org/10.7454/mst.v17i3.2926
Homkhiew, C., Rawangwong, S., Boonchouytan, W., Thongruang, W., & Ratanawilai, T. (2018). Composites from thermoplastic natural rubber reinforced rubberwood sawdust: Effects of sawdust size and content on thermal, physical, and mechanical properties. International Journal of Polymer Science, 2018, 1–11. https://doi.org/10.1155/2018/7179527
Huntley, C. J., Crews, K. D., Abdalla, M. A., Russell, A. E., & Curry, M. L. (2015). Influence of strong acid hydrolysis processing on the thermal stability and crystallinity of cellulose isolated from wheat straw. International Journal of Chemical Engineering, 2015, 1–11. https://doi.org/10.1155/2015/658163
Indrajati, I. N., & Dewi, I. R. (2017). Performance of maleated castor oil based plasticizer on rubber: rheology and curing characteristic studies. IOP Conference Series: Materials Science and Engineering, 223, 012001. https://doi.org/10.1088/1757-899X/223/1/012001
Indrajati, I. N., Dewi, I. R., & Nurhajati, D. W. (2018). Thermal properties of thermoplastic natural rubber reinforced by microfibrillar cellulose. IOP Conference Series: Materials Science and Engineering, 432, 012038. https://doi.org/10.1088/1757-899X/432/1/012038
Janardhnan, S., & Sain, M. M. (2006). Isolation of cellulose microfibrils – An enzymatic approach. Bioresources, 1(2), 176–188.
Jia, X., Chen, Y., Shi, C., Ye, Y., Wang, P., Zeng, X., & Wu, T. (2013). Preparation and characterization of cellulose regenerated from phosphoric acid. Journal of Agricultural and Food Chemistry, 61(50), 12405–12414. https://doi.org/10.1021/jf4042358
Kahar, A. W. M., Sarifuddin, N., & Ismail, H. (2017). Structural, thermal and physico-chemical properties of high density polyethylene/natural rubber/modified cassava starch blends. Iranian Polymer Journal, 26, 149–159. https://doi.org/10.1007/s13726-017-0507-3
Kalapakdee, A., & Amornsakchai, T. (2014). Mechanical properties of preferentially aligned short pineapple leaf fiber reinforced thermoplastic elastomer: Effects of fiber content and matrix orientation. Polymer Testing, 37, 36–44. https://doi.org/10.1016/j.polymertesting.2014.04.008
Manaila, E., Stelescu, M. D., & Craciun, G. (2018). Degradation studies realized on natural rubber and plasticized potato starch based eco-composites obtained by peroxide cross-linking. International Journal of Molecular Sciences, 19(10), 2862. https://doi.org/10.3390/ijms19102862
Miedzianowska, J., Masłowski, M., & Strzelec, K. (2019). Thermoplastic elastomer biocomposites filled with cereal straw fibers obtained with different processing methods – Preparation and properties. Polymers, 11(4), 641. https://doi.org/10.3390/polym11040641
Mondal, M., Gohs, U., Wagenknecht, U., & Heinrich, G. (2013). Polypropylene/natural rubber thermoplastic vulcanizates by eco-friendly and sustainable electron induced reactive processing. Radiation Physics and Chemistry, 88, 74–81. https://doi.org/10.1016/j.radphyschem.2013.03.021
Panyasart, K., Chaiyut, N., Amornsakchai, T., & Santawitee, O. (2014). Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia, 56, 406–413. https://doi.org/10.1016/j.egypro.2014.07.173
Pechurai, W., Nakason, C., & Sahakaro, K. (2008). Thermoplastic natural rubber based on oil extended NR and HDPE blends: Blend compatibilizer, phase inversion composition and mechanical properties. Polymer Testing, 27(5), 621–631. https://doi.org/10.1016/j.polymertesting.2008.04.001
Peng, Y., Gardner, D. J., & Han, Y. (2012). Drying cellulose nanofibrils: in search of a suitable method. Cellulose, 19, 91–102. https://doi.org/10.1007/s10570-011-9630-z
Prukkaewkanjana, K., Thanawan, S., & Amornsakchai, T. (2015). High performance hybrid reinforcement of nitrile rubber using short pineapple leaf fiber and carbon black. Polymer Testing, 45, 76–82. https://doi.org/10.1016/j.polymertesting.2015.05.004
Sae-Oui, P., Sirisinha, C., Sa-nguanthammarong, P., & Thaptong, P. (2010). Properties and recyclability of thermoplastic elastomer prepared from natural rubber powder (NRP) and high density polyethylene (HDPE). Polymer Testing, 29(3), 346–351. https://doi.org/10.1016/j.polymertesting.2009.12.010
Salmah, H., & Ismail, H. (2008). The Effect of filler loading and maleated polypropylene on properties of rubberwood filled polypropylene/natural rubber composites. Journal of Reinforced Plastics and Composites, 27(16–17), 1867–1876. https://doi.org/10.1177/0731684407081382
Shibulal, G. S., & Naskar, K. (2011). RFL coated aramid short fiber reinforced thermoplastic elastomer: Mechanical, rheological and morphological characteristics. Journal of Polymer Research, 18, 2295–2306. https://doi.org/10.1007/s10965-011-9643-1
Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose, 17, 459–494. https://doi.org/10.1007/s10570-010-9405-y
Soltani, S., Naderi, G., & Mohseniyan, S. (2014). Mechanical, morphological and rheological properties of short nylon fiber reinforced acrylonitrile-butadiene rubber composites. Fibers and Polymers, 15, 2360–2369. https://doi.org/10.1007/s12221-014-2360-8
Suwanruji, P., Tuechart, T., Smitthipong, W., & Chollakup, R. (2017). Modification of pineapple leaf fiber surfaces with silane and isocyanate for reinforcing thermoplastic. Journal of Thermoplastic Composite Materials, 30(10), 1344–1360. https://doi.org/10.1177/0892705716632860
Varghese, S., Alex, R., & Kuriakose, B. (2004). Natural rubber-isotactic polypropylene thermoplastic blends. Journal of Applied Polymer Science, 92(4), 2063–2068. https://doi.org/10.1002/app.20077
Yuakkul, D., Amornsakchai, T., & Saikrasun, S. (2015). Effect of maleated compatibilizer on anisotropic mechanical properties, thermo-oxidative stability and morphology of styrenic based thermoplastic elastomer reinforced with alkali-treated pineapple leaf fiber. International Journal of Plastics Technology, 19, 388–411. https://doi.org/10.1007/s12588-016-9132-9
DOI: http://dx.doi.org/10.20543/mkkp.v36i2.6522
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Ihda Novia Indrajati, Indiah Ratna Dewi, Dwi Wahini Nurhajati

This work is licensed under a Creative Commons Attribution 4.0 International License.
MKKP indexed by: