Effect of Bi2O3 on the properties of linier low density polyethylene (LLDPE)/natural rubber compound (NRC) composites

Dwi Wahini Nurhajati, Umi Reza Lestari, Ike Setyorini


The use of thermoplastic natural rubber (TPNR) has spread for many applications such as in footwear, hoses, seals, and automobiles. This increase is in line with the environmental awareness to produce materials that can be recycled. In this paper, the making of TPNR for car floor mat was studied. Bi2O3 filler was added to modify the performance of TPNR for car floor mat. In this study, the effects of Bi2O3 filler on the properties of linear low-density polyethylene (LLDPE)/natural rubber (NR) composites had been investigated. The weight ratio of LLDPE/NR was varied at 90/10; 80/20; 75/25; and 70/30. Bi2O3 filler loading was varied at 0; 20; 40; and 50 phr. The increase in NR and Bi2O3 filler reduced the tensile strength, elongation at break, and tear resistance, but increased the hardness and density of the composites. Compared to similar imported products, the samples prepared in this study showed higher values for all mechanical properties (tensile strength, elongation at break, tear resistance) but lower values in density. Scanning electron microscopy (SEM) micrograph of LLDPE/NR 75/25 composites either with or without the addition of 20 phr Bi2O3 filler displayed homogeneity of the mixture.

Full Text:



Abdullah, Z., & Ibrahim, K. M. Y. K. (2014). Electrical tracking performance of thermoplastic elastomer nanocomposites material under high voltage application. International Journal of Scientific & Engineering Research, 5(12), 708–711.

Al-Mattarneh, H., & Dahim, M. (2019). Physical and mechanical properties of microwave absorber material containing micro and nano barium ferrite. Advanced Materials Letters, 10(4), 259–262. https://doi.org/10.5185/amlett.2019.2226

Ambika, M. R., Nagaiah, N., Harish, V., Lokanath, N. K., Sridhar, M. A., Renukappa, N. M., & Suman, S. K. (2017). Preparation and characterization of isophthalic-Bi2O3 polymer composite gamma radiation shields. Radiation Physics and Chemistry, 130, 351–358. https://doi.org/10.1016/j.radphyschem.2016.09.022

Arief, Y., Makmud, M., Sahari, J., Junian, S., & Wahit, M. (2016). Tensile and physical properties of linear low density polyethylene-natural rubber composite: Comparison between size and filler types. International Journal of Engineering, 29(9), 1257–1262.

Cozzi, A. C., Briasco, B., Salvarani, E., Mannucci, B., Fangarezzi, F. & Perugini, P. (2018). Evaluation of mechanical properties and volatile organic extractable to investigate LLDPE and LDPE polymers on final packaging for semisolid formulation. Pharmaceutic, 10(3), 113. https://doi.org/10.3390/pharmaceutics10030113

Homkhiew, C., Rawangwong, S., Boonchouytan, W., Thongruang, W., & Ratanawilai, T. (2018). Composites from thermoplastic natural rubber reinforced rubberwood sawdust: Effects of sawdust size and content on thermal, physical, and mechanical properties. International Journal of Polymer Science, 2018, 7179527, 1–11. https://doi.org/10.1155/2018/7179527

ISO. (2015). ISO 34-1:2015(E): Rubber, vulcanized or thermoplastic — Determination of tear strength — Part 1: Trouser, angle, and crescent test pieces. Geneva, Switzerland: International Organization for Standardization.

ISO. (2017). ISO 37:2017(E): Rubber vulcanized or thermoplastic – Determination of tensile stress-strain properties. Geneva, Switzerland: International Organization for Standardization.

ISO. (2018a). ISO 48-4:2018(E): Rubber vulcanized or thermoplastic – Determination of hardness— Part 4: Indentation hardness by durometer method (Shore hardness). Geneva, Switzerland: International Organization for Standardization.

ISO. (2018b). ISO 2781:2018(E): Rubber, vulcanized, or thermoplastic — Determination of density (Method A). Geneva, Switzerland: International Organization for Standardization.

Mastalygina, E., Varyan, I., Kolesnikova, N., Gonzalez, M. I. C., & Popov, A. (2020). Effect of natural rubber in polyethylene composites on morphology, mechanical properties, and biodegradability. Polymers, 12(2), 437. https://doi.org/10.3390/polym12020437

Okele, A. I., Buba, M. A., Marut, A. J., Oboh, G. M., & Ogbonna, L. I. (2018). Studies on the mechanical properties of thermoplastic elastomer (polypropylene/natural rubber blends). International Journal of Advanced Research in Engineering & Management, 4(4), 59–65.

Onuoha, C., Onyemaobi, O. O., Anyakwo, C. N., & Onuegbu, G. C. (2017). Effect Of filler loading and particle size on the mechanical properties of periwinkle shell-filled recycled polypropylene composites. American Journal of Engineering Research, 6(4), 72–79.

Pavlenko, V. I., Cherkashina, N. I., & Yastrebinsky, R. N. (2019). Synthesis and radiation shielding properties of polyimide/Bi2O3 composites. Heliyon, 5(5), e01703. https://doi.org/10.1016/j.heliyon.2019.e01703

Poltabtim, W., Wimolmala, E., & Saenboonruang, K. (2018). Properties of lead-free gamma-ray shielding materials from metal oxide/EPDM rubber composites. Radiation Physics and Chemistry, 153, 1–9. https://doi.org/10.1016/j.radphyschem.2018.08.036

Ramkumar, P. L., Kulkarni, D. M., & Chaudhari, V. V. (2014). Parametric and mechanical characterization of linear low density polyethylene (LLDPE) using rotational molding technology. Sadhana, 39, 625–635. https://doi.org/10.1007/s12046-013-0223-4

Ramlee, N. A., Hanapiah, S. S. M., Suhaimi, F. N., Ratnam, C. T., & Appadu, S. (2015). Effect of blend compositions on mechanical properties of irradiated titanium dioxide (TiO2)/polyvinyl chloride (PVC)/epoxidized natural rubber (ENR) nanocomposites. Advanced Materials Research, 1113, 43–49. https://doi.org/10.4028/www.scientific.net/AMR.1113.43

Ribeiro, V. F., Junior, E. C., Simões, D. N., Pittol, M., Tomacheski, D., & Santana, R. M. C. (2019). Use of copper microparticles in SEBS/PP compounds. Part 1: Effects on morphology, thermal, physical, mechanical and antibacterial properties. Materials Research, 22(2), e20180304. https://doi.org/10.1590/1980-5373-MR-2018-0304

Sampath, W. D. M., Egodage, S. M., & Edirisinghe, D. G. (2019). Effect of an organotitanate coupling agent on properties of calcium carbonate filled low-density polyethylene and natural rubber composites. Journal of the National Science Foundation of Sri Lanka, 47(1), 17–27. https://doi.org/10.4038/jnsfsr.v47i1.8923

Simões, D. N., Pittol, M., Tomacheski, D., Ribeiro, V. F., & Santana, R. M. C. (2017). Thermoplastic elastomers containing zinc oxide as antimicrobial additive under thermal accelerated ageing. Materials Research, 20, 325–330. https://doi.org/10.1590/1980-5373-MR-2016-0790

Toyen, D., Rittirong, A., Poltabtim, W., & Saenboonruang, K. (2018). Flexible, lead‑free, gamma‑shielding materials based on natural rubber/metal oxide composites. Iranian Polymer Journal, 27, 33–41. https://doi.org/10.1007/s13726-017-0584-3

Villani, M., Consonni, R., Canetti, M., Bertoglio, F., Iervese, S., Bruni, G., Visai, L., Iannace, S., & Bertini, F. (2020). Polyurethane-based composites: Effects of antibacterial fillers on the physical-mechanical behavior of thermoplastic polyurethanes. Polymers, 12(2), 362. https://doi.org/10.3390/polym12020362

Wickramaarachchi, W. V. W. H., Walpalage, S., & Egodage, S. M. (2016). Identification of the polyethylene grade most suitable for natural rubber-polyethylene blends used for roofing applications. Engineer: Journal of the Institution of Engineers Sri Lanka, 49(4), 9–14. https://doi.org/10.4038/engineer.v49i4.7233

Zailan, F. D., Chen, R. S., Ahmad, S., Shahdan, D., Mat Ali, A., & Ruf, M. F. H. M. (2018). Blends of linear low-density polyethylene, natural rubber, and polyaniline: Tensile properties and thermal stability. Malaysian Journal of Analytical Sciences, 22(6), 999–1006.

DOI: http://dx.doi.org/10.20543/mkkp.v36i1.6128


  • There are currently no refbacks.

Copyright (c) 2020 Dwi Wahini Nurhajati, Umi Reza Lestari, Ike Setyorini

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


MKKP indexed by:

Cover Page Cover Page     Cover Page    Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page    Cover Page    Cover Page    Cover Page     Cover Page     Cover Page   Cover Page   Cover Page   Cover Page   Cover Page              




Free counters!