Seleksi resin dan rubber processing oil (RPO) dalam pembuatan cushion gum sebagai perekat ban vulkanisir

Santi Puspitasari, Norma Arisanti Kinasih, Adi Cifriadi, Arief Ramadhan, Zahra Krishna Hadi, Novita Putri Wahyuni, Mochamad Chalid

Abstract


Cushion gum merupakan salah satu material penting dalam industri ban vulkanisir. Cushion gum berfungsi sebagai perekat yang digunakan pada ban vulkanisir untuk melekatkan bagian karet casing ban lama dengan karet telapak yang baru. Kualitas cushion gum tergantung pada komposisi bahan penyusunnya yang utamanya terdiri dari polimer, resin tackifier, dan plasticizer Rubber Processing Oil (RPO). Riset ini dimaksudkan untuk mempelajari kualitas cushion gum yang dibuat dengan memformulasikan berbagai jenis dan dosis resin tackifier serta plasticizer RPO. Resin (R1-R3) yang digunakan terdiri dari resin coumarone, resorsinol, dan resin turunan hidrokarbon pada dosis 5 phr. Sementara jenis plasticizer RPO (P1-P3) yang dipelajari dalam riset meliputi minyak parafin, minyak pine tar, dan minyak aromatik pada dosis 20 phr. Variasi dosis RPO hanya dibatasi untuk jenis minyak pine tar, yaitu pada 12 dan 20 phr. Pembuatan kompon dilakukan dalam mesin giling terbuka skala laboratorium. Selanjutnya kompon cushion gum dicetak dalam mesin cetak hidrolik pada suhu 150 °C dan tekanan 100 kg/cm2. Vulkanisat cushion gum kemudian diuji sifat mekanis dan kekuatan rekat. Hasil pengujian dievaluasi dan digunakan sebagai dasar dalam menentukan jenis dan dosis resin tackifier dan plasticizer RPO yang terbaik dalam pembuatan cushion gum. Hasil eksperimen menunjukkan bahwa variasi jenis dan dosis resin tackifier dan plasticizer RPO berpengaruh terhadap karakteristik pematangan kompon, sifat mekanis dan kekuatan rekat vulkanisat cushion gum. Formula karet cushion gum paling optimum diperoleh dari perpaduan resin tackifier jenis coumarone sebesar 5 phr dan plasticizer RPO jenis minyak pine tar sebesar 20 phr.

Full Text:

PDF

References


Banerjee, B. (2019). Tyre retreading. Calcutta, India: De Gruyter.

Barnes, T. M., & Greive, K. A. (2017). Tropical pine tar: History, properties and use as a treatment for common skin condition. Australasian Journal of Dermatology, 58(2), 80–85. https://doi.org/10.1111/ajd.12427

Basak, G. C., Bandyopadhyay, A., & Bhowmick, A. K. (2012). The role of tackifiers on the auto-adhesion behavior of EPDM rubber. Journal of Materials Science, 47, 3166–3176. https://doi.org/10.1007/s10853-011-6151-y

Bakhshandeh, G. R., & Soltanalinegad, M. A. (2000). Studies on the adhesion of cushion gum to carcass in retreaded tyre. Iranian Journal of Polymer Science and Technology, 13(4), 217–225. https://doi.org/10.22063/jipst.2000.333

Bocque, M., Voirin, C., Lapinte, V., Caillol, S., & Robin, J. (2016). Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. Journal of Polymer Science: Part A Polymer Chemistry, 54(1), 11–33. https://doi.org/10.1002/pola.27917

Deng, X. (2016). Progress on rubber-based pressure-sensitive adhesives. The Journal of Adhesion, 94(2), 77–96. https://doi.org/10.1080/00218464.2016.1249573

Dewan Karet Indonesia. (2018). Statistik industri karet 2017. Jakarta, Indonesia: Dekarindo.

Dong, R., Zhao, M., & Tang, N. (2019). Characterization of crumb tire rubber lightly pyrolyzed in waste cooking oil and the properties of its modified bitumen. Construction and Building Materials, 195, 10–18. https://doi.org/10.1016/j.conbuildmat.2018.11.044

Flanigan, C., Beyer, L., Klekamp, D., Rohweder, D., & Haakenson, D. (2013). Using bio-based plasticizers, alternative rubber. Rubber & Plastic News, 15–19.

Franta, I. (1989). Elastomers and rubber compounding materials. Amsterdam, Netherlands: Elsevier Science Publisher.

Gent, A. N., & Walter, J. D. (2005). The pneumatic tire. Washington DC, US: The National Highway Traffic Safety Administration, U.S. Department of Transportation.

Han, K., Li, M., Xu, H., & Xiao, J. (2018). Study on hot vulcanized adhesive for rubber and metal bonding. AIP Conference Proceedings, 1995, 020008. https://doi.org/10.1063/1.5048739

Hetzel, P. D. (2010). US Patent No. US20100139825A1. Wahington, USA: U.S. Patent and Trademark Office.

Lee, S. Y., & Gan, S. N. (2013). The adhesion properties of natural rubber pressure-sensitive adhesives using palm kernel oil-based alkyd resins as a tackifier. Composite Interfaces, 20(3), 177–188. https://doi.org/10.1080/15685543.2013.763515

Miandad, R., Barakat, M. A., Rehan, M., Aburiazaiza, A. S., Gardy, J., & Nizami, A. S. (2018). Effect of advanced catalysts on tire waste pyrolysis oil. Process Safety and Environment Protection, 116, 542–552. https://doi.org/10.1016/j.psep.2018.03.024

Mondal, D., Ghorai, S., Rana, D., De, D., & Chattopadhyay, D. (2019). The rubber-filler interaction and reinforcement in styrene butadiene rubber/devulcanized natural rubber composites with silica-graphene oxide. Polymer Composite, 40(S2), E1559–E1572. https://doi.org/10.1002/pc.25076

Movahed, S. O., Ansarifar, A., & Mirzaie, F. (2015). Effect of various efficient vulcanization cure sytems on the compression set of a nitrile filled with different fillers. Journal of Applied Polymer Science, 132(8), 41512–41521. https://doi.org/10.1002/app.41512

Oter, M., Karaagac, B., & Deniz, V. (2011). Substitution of aromatic processing oils in rubber compounds. KGK Rubber Point, 64, 48–51.

Raethong, P., & Boonkerd, K. (2017). Effect of type and content of tackifier on adhesion of natural rubber and reclaimed natural rubber based sealant. IOP Conference Series: Materials Science and Engineering, 223, 012011. https://doi.org/10.1088/1757-899X/223/1/012011

Rodgers, B. (2004). Rubber compounding chemistryand applications. New York, USA: Marcel Dekker Inc.

Sasaki, M., Nakamura, Y., Fujita, K., Kinugawa, Y., Iida, T., & Urahama, Y. (2005). Relation between phase structure and peel adhesion of poly(styrene-isoprene-styrene) triblock copolymer/tackifier blend system. Journal of Adhesion Science and Technology, 19(16), 1445–1457. https://doi.org/10.1163/156856105774805859

Simic, V., & Dabic-Ostojic, S. (2017). Interval-parameter chance-constrained programming model for uncertainty-based decision making in tire retreading industry. Journal of Cleaner Production, 167, 1490–1498. https://doi.org/10.1016/j.jclepro.2016.10.122

Siwarote, B., Sae-Oui, P., Wirasate, S., & Suchiva, K. (2017). Effects of bio-based oils on processing properties and cure characteristic of silica-filled natural rubber compounds. Journal of Rubber Research, 20(1), 1–19. https://doi.org/10.1007/BF03449138

Subulan, K., Tasan, A. S., & Baykasoglu, A. (2015). Desingning an environmentally conscious tire closed-loop supply chain network with multiple recovery options using interactive fuzzy goal programming. Applied Mathematical Modelling, 39(9), 2661–2702. https://doi.org/10.1016/j.apm.2014.11.004

Syamin, Y. M., Azemi, S., & Dzaraini, K. (2017). Evaluation of cooking oil as processing additive for natural rubber. ASEAN Journal on Science & Technology for Development, 34(1), 17–25. https://doi.org/10.29037/ajstd.71

Thaijaroen, W. (2011). Effect of tackifiers on mechanical and dynamic properties of carbon-black-filled NR vulcanizates. Polymer Engineering and Science, 51(12), 2465–2472. https://doi.org/10.1002/pen.22033

Uriarte-Miranda, M., Caballero-Morales, S., Martinez-Flores, J., Cano-Olivos, P., & Akulova, A. (2018). Reverse logistic strategy for the management of tire waste in Mexico dan Russia: Review and conceptual model. Sustainability, 10(10), 3398. https://doi.org/10.3390/su10103398

White, J. R., & De, S. K. (2001). Rubber technologist handbook. Shropshire, UK: Rapra Technology Ltd.

Xu, H., Fan, T., Ye, N., Wu, W., Huang, D., Wang, D., Wang, Z., & Zhang, L. (2020). Plasticization effect of bio-based plasticizers from soybean oil for tire tread rubber. Polymers, 12(3), 623. https://doi.org/10.3390/polym12030623




DOI: http://dx.doi.org/10.20543/mkkp.v36i1.6105

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Santi Puspitasari, Norma Arisanti Kinasih, Adi Cifriadi, Arief Ramadhan, Zahra Krishna Hadi, Novita Putri Wahyuni, Mochamad Chalid

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

MKKP indexed by:

Cover Page Cover Page     Cover Page    Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page    Cover Page    Cover Page    Cover Page     Cover Page     Cover Page   Cover Page   Cover Page   Cover Page   Cover Page              

 

 

 

Free counters!