The effect of PVC’s resin K-value on the mechanical properties of the artificial leather

Muh. Wahyu Syabani, Cynthia Devi, Indri Hermiyati, Andreas D Angkasa


Artificial leather offer wide variety of application thus the demand is increased over time. The variation of the product needs different properties that can be achieved using resin with suitable k-value.This works reports the influence of the resin k-value on the mechanical properties of the artificial leather. The combination of various resin with different k-value (66, 68, 72, 74, and 76)is used and the tensile strength and elongation at break of the product were evaluated. The results show that blending the PVC resin with different k-value can be used to adjust the easier processing of the lower k-value and better mechanical properties of the higher k-value. Larger k-value differences between two resin make more difficulties of resin blending thus give more defect. For the blending of two resin, the tensile strength and elongation value would be between both of the resin initial properties. The final properties will be closer to the resin with a higher percentage in the resin blending.

Full Text:



Coelho, J. F. J., Gonçalves, P. M. F. O., Miranda, D., & Gil, M. H. (2006). Characterization of suspension poly(vinyl chloride) resins and narrow polystyrene standards by size exclusion chromatography with multiple detectors: Online right angle laser-light scattering and differential viscometric detectors. European Polymer Journal, 42(4), 751–763.

Du, Y., Gao, J., Yang, J., & Liu, X. (2012). Dynamic rheological behavior and mechanical properties and of PVC/ASA blends. Journal of Polymer Research, 19, 9993.

Gurera, D., & Bhushan, B. (2018). Fabrication of bioinspired superliquiphobic synthetic leather with self-cleaning and low adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 545, 130–137.

Luo, Y., Chen, S., Zhang, L., Su, J., Zhang, Y., & Luo, S. (2012). Experimental studies on elastic cooling and pyromagnetic effect of polyvinyl chloride sheets with defects. Korea-Australia Rheology Journal, 24, 205–210.

Ma, Y., Dang, X., & Shan, Z. (2019). Thermal analysis and identification of potential fire-proof energy building material based on artificial leather. Journal of Thermal Science, 28, 88–96.

Maia, I., Santos, J., Abreu, M. J., Miranda, T., Carneiro, N., & Soares, G. M. B. (2017). PVC-based synthetic leather to provide more comfortable and sustainable vehicles. IOP Conference Series: Materials Science and Engineering, 254, 122006.

Marceneiro, S., Alves, R., Lobo, I., Dias, I., de Pinho, E., Dias, A. M. A., Rasteiro, M. G.,& de Sousa, H. C. (2018). Effects of poly(vinyl chloride) morphological properties on the rheology/aging of plastisols and on the thermal/leaching properties of films formulated using nonconventional plasticizers. Industrial & Engineering Chemistry Research, 57(5), 1454–1467.

Mehdipour, M. R., Talebi, S., & Aghjeh, M. K. R. (2017). Effect of unplasticizedpoly vinyl chloride (UPVC) molecular weight and graft-acrylonitrile-butadiene-styrene (g-ABS) content on compatibility and izodimpact strength of UPVC/g-ABS blends. Journal of Macromolecular Science, Part B, 56(9), 644–654.

Pepperl, G. (2000). Molecular weight distribution of PVC blends from resins with differentK values. Journal of Vinyl and Additive Technology, 6(4), 181–186.

Pimapunsri, K., Wuttipornpun, T., & Veeranant, D. (2017). A study of the factors affecting the separation force of artificial leather laminating process. Key Engineering Materials, 728, 307–312.

Roh, E. K., Oh, K. W., & Kim, S. H. (2014). Effect of raising cycles on mechanical, comfort, and hand properties of artificial suede. Textile Research Journal, 84(18), 1995–2005.

Rybachuk, G. V., Kozlova, I. I., Mozzhukhin, V. B., & Guzeev, V. V. (2007). PVC plastisols: Preparation, properties, and application. Polymer Science Series C, 49, 6–12.

Sakmat, J., Lopattananon, N., & Kaesaman, A. (2015). Effect of fiber surface modification on properties of artificial leather from leather fiber filled natural rubber composites. Key Engineering Materials, 659, 378–382.

Selvaraj, D. E., Vijayaraj, R., Satheeshwaran, U., Nancy, J., Sugumaran, C. P., Kumar, M. R., Ganesan, J., Geethadevi, S., & Kumar, S. D. (2015). Experimental investigation on electrical and mechanical characteristics of PVC cable insulation with silica nanofiller. Applied Mechanics and Materials, 749, 159–163.

Sholeh, M., & Rochani, S. (2018). Pengaruh pemlastisdioktilftalat terhadap sifat fisis dan mekanis kulit sintetis. Jurnal Litbang Industri, 8(1), 17–22.

Yang, C., Wang, J., & Li, L. (2017). A novel approach for developing high thermal conductive artificial leather by utilizing smart electronic materials. Textile Research Journal, 87(7), 816–828.

Yang, Z., Luo, Y., Su, J., Zhang, Y., Deng, X., Chen, S., Deng, R., Ma, M., & Zhang, L. (2008). Thermomechanical coupling effect of PVC sheet with defects. Journal of Central South University of Technology, 15, 568–572.

Zadhoush, A., Alsharif, M. A., & Boukany, P. E. (2004). The Influence of K-value and plasticizer type on the rheological behaviour of plastisolused in coated fabrics. Iranian Polymer Journal, 13(5), 371–379.



  • There are currently no refbacks.

Copyright (c) 2019 Muh. Wahyu Syabani, Cynthia Devi, Indri Hermiyati, Andreas D Angkasa

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


MKKP indexed by:

Cover Page Cover Page     Cover Page    Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page    Cover Page    Cover Page    Cover Page     Cover Page     Cover Page   Cover Page   Cover Page   Cover Page   Cover Page              




Free counters!