Degradation of surfactant waste of leather tanning using Fe2O3/activated carbon catalyst

Shinta Amelia, Witri Rahmadani, Laeli Rizki Amalia, Zahrul Mufrodi

Abstract


The development of the tannery industry in addition to being beneficial for the economic growth of the community also has a negative impact on the environment due to the disposal of waste produced. Components of waste produced from the leather tanning industry include residual protein and fat, surfactants, anti-bacterial, anti-fungal, coloring and tanning agents. One component that is found in surfactants and often pollutes waters is alkyl benzene sulfonate and linear alkyl benzene sulfonate surfactants. Alkyl benzene sulfonate (ABS) is an anionic surfactant that has a very long and branched carbon chain that is difficult to degrade by microorganisms in nature. Characterization and testing of the activity of porous/activated carbon catalysts will be carried out. The type of porous activated carbon used is coconut shell carbon with microspores character. The stages of this research consisted of the process of impregnation of iron oxide on porous carbon, the surfactant waste degradation process and the characterization of the catalysts produced. Based on the research that has been done, it can be concluded that the catalyst Fe2O3/coconut shell activated carbon is very effective to be applied for the degradation of surfactant waste. The degradation capacity of surfactant wastes increases with increasing concentration of active site Fe. The capacity of the surfactant waste degradation reaction using coconut shell catalyst at t = 3 hours for variations in the concentration of Fe 2%, 4% and 6% respectively 6.77 mmol/gram catalyst, 3.18 mmol/gram catalyst and 1.61 mmol/gram catalyst. The data show that the surfactant waste degradation reaction capacity increases with the increase in the composition of iron oxide added to the surface of the porous carbon support.

Full Text:

PDF

References


Achille, G. N., & Yilian, L. (2010). Mineralization of organic compounds in wastewater contaminanted with petroleum hydrocarbon using Fenton’s reagent: A kinetic study. Journal of American Science, 6(4), 58-66. https://www.doi.org/10.7537/marsjas060410.09

Amelia, S., Sediawan, W. B., Prasetyo, I., Munoz, M., & Ariyanto, T. (2019). Role of the pore structure of Fe/C catalyst on heterogeneous Fenton oxidation. Journal of Environmental Chemical Engineering, 102921. https://doi.org/10.1016/j.jece.2019.102921

Amelia, S., Sediawan, W. B., Mufrodi, Z., & Ariyanto, T. (2018). Modification of iron oxide catalyst supported on the biomass based activated carbon for degradation of dye wastewater. Jurnal Bahan Alam Terbarukan, 7(2), 164-168. https://doi.org/10.15294/jbat.v7i2.17174

Castro, C. S., Guerreiro, M. C., Oliveira, L. C. A., Goncalves, M., Anastacio, A. S., & Nazzarro, M. (2009). Iron oxide dispersed over activated carbon: Support influence on the oxidation of the model molecule methylene blue. Applied Catalysis A: General, 367(1-2), 53-58. https://doi.org/10.1016/j.apcata.2009.07.032

Guan, Z., Tang, X., Nishimura, T., Huang, Y., & Reid, B. J. (2017). Adsorption of linear alkylbenzene sulfonates on carboxyl modified multi-walled carbon nanotubes. Journal of Hazardous Materials, 332(Part A), 205-214. https://doi.org/10.1016/j.jhazmat.2016.02.067

Haber, J., Block, J. H., & Delmon, B. (1995). Manual of methods and procedures for catalyst characterization. Pure and Applied Chemistry, 67(8-9), 1257-1306. https://doi.org/10.1351/pac199567081257

Hameed, B. H., Ahmad, A. A., & Aziz, N. (2007). Isotherm, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chemical Engineering Journal, 133(1-3), 195-203. https://doi.org/10.1016/j.cej.2007.01.032

Han, Z., Sani, B., Mrozik, W., Obst, M., Beckingham, B., Karapanagioti, H. K., & Werner, D. (2015). Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Water Research, 70, 394-403. https://doi.org/10.1016/j.watres.2014.12.016

Hashemian, S., Tabatabaee, M., & Gafari, M. (2013). Fenton oxidation of methyl violet in aqueous solution. Journal of Chemistry. http://doi.org/10.1155/2013/509097

Malato, S., Blanco, J., Campos, A., Caceres, J., Guillard, C., Herrmann, J. M., & Fernandez-Alba, A. R. (2003). Effect of operating parameters on the testing of new industrial titania catlysts at solar pilot plant scale. Applied Catalysis B: Environmental, 42(4), 349-357. https://doi.org/10.1016/S0926-3373(02)00270-9

Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2007). Adsorptive removal of Auramine-O: Kinetic and equilibrium study. Journal of Hazardous Materials, 143(1-2), 386-395. https://doi.org/10.1016/j.jhazmat.2006.09.059

Masomboon, N., Ratanatamskul, C., & Lu, M. (2011). Kinetics of 2,6-dimethylaniline oxidation by various Fenton processes. Journal of Hazardous Materials, 192(1), 347-353. https://doi.org/10.1016/j.jhazmat.2011.05.034

Matarredona, O., Rhoads, H., Li, Z., Harwell, J. H., Balzano, L., & Resasco, D. E. (2003). Dispersion of single-walled arbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. The Journal of Physical Chemistry B, 107(48), 13357-13367. https://doi.org/10.1021/jp0365099

Mousavi, S. A., Mahvi, A., Nasseri, S., & Ghafari, S. (2011). Effect of Fenton process (H2O2/Fe2+) on removal of linear alkylbenzene sulfonate (LAS) using central composite and response surface methodology. Iranian Journal Environmental Health Science and Engineering, 8(2), 111-116.

Orta, M. M., Martín, J., Medina-Carrasco, S., Santos, J. L.,Aparicio, I., & Alonso, E. (2018). Novel synthetic clays for the adsorption of surfactants from aqueous media. Journal of Environmental Management, 206, 357-363. https://doi.org/10.1016/j.jenvman.2017.10.053

Panizza, M., Barbucci, A., Delucchi, M., Carpanese, M. P., Giuliano, A., Cataldo-Hernández, M., & Cerisola G. (2013). Electro-Fenton degradation of anionic surfactants. Separation and Purification Technology, 118, 394-398. https://doi.org/10.1016/j.seppur.2013.07.023

Prieto-Rodríguez, L., Oller, I., Klamerth, N., Agüera, A., Rodríguez, E. M., & Malato, S. (2013). Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Research, 47(4), 1521-1528. https://doi.org/10.1016/j.watres.2012.11.002

Sholeh, M., Supraptiningsih, Arsitika, W. P. (2013). Penurunan COD air limbah industri penyamakan kulit menggunakan reagen Fenton. Majalah Kulit, Karet dan Plastik, 29(1), 31-36. http://doi.org/10.20543/mkkp.v29i1.216

Verma, Y. (2011). Toxicity assesment of dye containing industrial effluents by acute toxicity test using Daphnia magna. Toxicology and Industrial Health, 27(1), 41-49. http://doi.org/10.1177/0748233710380218

Yang, W. B., Li, A., Fan, J., Yang, L., & Zhang, Q. (2006). Adsorption of branched alkylbenzene sulfonate onto styrene and acrylic ester resins. Chemosphere, 64(6), 984-990. https://doi.org/10.1016/j.chemosphere.2006.01.013

Yu, Y., Zhao, J., & Bayly, A. E. (2008). Development of surfactants and builders in detergent formulations. Chinese Journal of Chemical Engineering, 16(4), 517-527. https://doi.org/10.1016/S1004-9541(08)60115-9




DOI: http://dx.doi.org/10.20543/mkkp.v35i2.5607

Refbacks



Copyright (c) 2019 Shinta Amelia, Witri Rahmadani, Laeli Rizki Amalia, Zahrul Mufrodi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

MKKP indexed by:

Cover Page Cover Page     Cover Page    Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page    Cover Page    Cover Page    Cover Page     Cover Page     Cover Page   Cover Page   Cover Page   Cover Page   Cover Page              

 

 

 

Free counters!