Pengaruh penambahan pati tapioka terhadap sifat mekanis dan struktur komposit high density polyethylene

Dwi Wahini Nurhajati, Ihda Novia Indrajati, Hesty Eka Mayasari, Muhammad Sholeh

Abstract


Telah dilakukan penelitian tentang pengaruh penambahan pati tapioka terhadap sifat mekanis dan struktur komposit plastik high density polyethylene (HDPE). Komposit HDPE berisi pati tapioka dibuat menggunakan internal mixer Haake Rheomix pada suhu 130°C dan kecepatan rotor 40 rpm selama 15 menit. Pati tapioka sebelum dibuat komposit dicampur lebih dulu dengan gliserol, air dan asam asetat. Jumlah pati di dalam komposit HDPE divariasi 30, 40, 50, 60, dan 70%. Penambahan pati tapioka menurunkan sifat kuat tarik namun meningkatkan nilai perpanjangan putus dan densitas komposit HDPE. Perlakuan aging terhadap komposit HDPE yang berisi pati tapioka ≥ 50% menaikkan sifat kuat tarik namun menurunkan sifat perpanjangan putusnya. Difraktogram XRD komposit HDPE memperlihatkan bahwa penambahan pati tapioka menyebabkan terjadinya pergeseran nilai 2-theta dan penurunan intensitasnya. Spektra FTIR komposit HDPE yang berisi pati tapioka memperlihatkan pergeseran panjang gelombang yang diduga terjadinya transisi amorf-kristal.

Full Text:

PDF

References


Adamu, A. D., Jikan, S. S., Talip, B. H. A., Badarulzaman, N. A., & Yahaya, S. (2017). Effect of glycerol on the properties of tapioca starch film. Materials Science Forum, 888, 239-243. https://doi.org/10.4028/www.scientific.net/MSF.888.239

Ali, R. R., Rahman, W. A. W. A., Kasmani, R. M., Ibrahim, N., Mustapha, S. N. H., & Hasbullah, H. (2013). Tapioca starch biocomposite for disposable packaging ware. Chemical Engineering Transactions, 32, 1711-1716. https://doi.org/10.3303/CET1332286

Chouit, F., Guellati, O., Boukhezar, S., Harat, A., Guerioune, M., & Badi, N. (2014). Synthesis and characterization of HDPE/N-MWNT nanocomposite films. Nanoscale Research Letters, 9, 288-293. https://doi.org/10.1186/1556-276X-9-288

Deeyai, P., Suphantharika, M., Wongsagonsup, R., Dangtip, S. (2013). Characterization of modified tapioca starch in atmospheric argon plasma under diverse humidity by FTIR spectroscopy. Chinese Physics Letters, 30(1), 0181031. https://doi.org/10.1088/0256-307X/30/1/018103

Jung, M. R., Horgen, F. D., Orski, S. V., Rodriguez C, V., Beers, K. L., Balazs, G. H., Jones, T. T., Work, T. M., Brignac, K. C., Royer, S., Hyrenbach, K. D., Jensen, B. A., & Lynch, J. M. (2018). Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin, 127, 704–716. https://doi.org/10.1016/j.marpolbul.2017.12.061

Lomelí-Ramirez, M. G., Kestur, S. G., Manríquez-González, R., Iwakiri, S., Bolzon, M. G., de Muniz, G. B., & Flores-Sahagun, T. S. (2014). Bio-composites of cassava starch-green coconut fiber: Part II—Structure and properties. Carbohydrate Polymers, 102, 576–583. https://doi.org/10.1016/j.carbpol.2013.11.020

Lutfi, M., Sumarlan, S. H., Susilo, B., Wignyanto, Zenata, R., & Perdana, L. P. R. (2017). The glycerol effect on mechanical behaviour of biodegradable plastic from the Walur (Amorphophallus paenifolius var. sylvestris). Nature Environment and Pollution Technology, 16(4), 1121-1124.

Maran, J. P., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2014). Degradation behaviour of biocomposites based on cassava starch buried under indoor compost conditions. Carbohydrate Polymers, 101, 20–28. https://doi.org/10.1016/j.carbpol.2013.08.080

Mendes, J. F., Paschoalin R. T., Carmona V. B., Neto, A. R. S., Marques, A. C. P., Marconcini, J. M., Mattoso, L. H. C., Medeiros, E. S., & Oliveira, J. E. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452-458. https://doi.org/10.1016/j.carbpol.2015.10.093

Nguyen, D. M., Do, T. V. V., Grillet, A., Thuc, H. H., & Thuc, C. N. H. (2016). Biodegradability of polymer film based on low density polyethylene and cassava starch. International Biodeterioration & Biodegradation, 115, 257-265. https://doi.org/10.1016/j.ibiod.2016.09.004

Obasi, H. C., & Igwe, I. O. (2014). Effects of native cassava starch and compatibilizer on biodegradable and tensile properties of polypropylene. American Journal of Engineering Research, 3(2), 96-104.

Oragwu, I. P. (2016). Investigations on the corn-starch modified low density polyethylene blends. Matter: International Journal of Science and Technology, 2(1), 01-11. https://doi.org/10.20319/mijst.2016.21.0111

Pg Adnan, D. N., & Arshad, S. E. (2017). Effect of thermal treatment on mechanical properties rice husk ash filled tapioca starch composite. Transactions on Science and Technology, 4(3-2), 286-291.

Prabha, P. H., & Ranganathan, T. V. (2017). Modelling and optimization of cassava starch based film for food packaging applications. Pakistan Journal of Biotechnology, 14(4), 571-586.

Roy, S. B., Shit, S. C., Sengupta, R. A., & Shukla, P. R. (2015). Studies on biodegradability, morphology, physicomechanical and thermal properties of PP/potato starch bio-composite. International Journal of Current Engineering and Technology, 5(2), 1074-1084.

Sabetzadeh, M., Bagheri, R., & Masoomi, M. (2015). Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films. Carbohydrate Polymers, 119, 126-133. https://doi.org/10.1016/j.carbpol.2014.11.038

Samper-Madrigal, M. D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J. M. (2015). The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863–872. https://doi.org/10.1007/s10853-014-8647-8

Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. Journal of Food Science and Technology, 53(1), 326–336. https://doi.org/10.1007/s13197-015-2009-7

Tajeddin, B., & Abdulah, L. C. (2010). Thermal properties of high density polyethylene-kenaf cellulose composites. Polymers and Polymer Composites, 18(5), 257-261. https://doi.org/10.1177/096739111001800503

Tanetrungroj, Y., & Prachayawarakorn, J. (2015). Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique. Songklanakarin Journal of Science and Technology, 37(2), 193-199.

Yamak, H. B. (2016). Thermal, mechanical and water resistance properties of LDPE/starch bio-based polymer blends for food packing applications. Journal of the Turkish Chemical Society, Section A: Chemistry, 3(3), 637-656. http://doi.org/10.18596/jotcsa.287300

Zanela, J., Casagrande, M., Shirai, M. A., de Lima, V. A., & Yamashita, F. (2016). Biodegradable blends of starch/polyvinyl alcohol/glycerol: Multivariate analysis of the mechanical properties. Polimeros, 26(3), 193-196. https://doi.org/10.1590/0104-1428.2420




DOI: http://dx.doi.org/10.20543/mkkp.v34i2.4138

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Dwi Wahini Nurhajati, Ihda Novia Indrajati, Hesty Eka Mayasari, Muhammad Sholeh

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

MKKP indexed by:

Cover Page Cover Page     Cover Page    Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page    Cover Page    Cover Page    Cover Page     Cover Page     Cover Page   Cover Page   Cover Page   Cover Page   Cover Page              

 

 

 

Free counters!