Karakteristik termogravimetri dan kinetika dekomposisi EPDM dengan bahan pengisi carbon black

Hesty Eka Mayasari, Arum Yuniari

Abstract


The thermal characteristics of a material are important to learn in order to know the thermal stability of the materials. Ethylene propylene diene monomer (EPDM) is a synthetic rubber that is widely used in industry due to its resistance to aging, ozone, and chemicals. The kinetic parameters and thermal decomposition of vulcanized EPDM were studied using thermogravimetric method with various vulcanization systems (efficient, semi-efficient, and conventional vulcanization system) and various carbon black (CB) as filler (50, 60, and 70 phr). Decomposition consist of two stages; the oxidation of EPDM and volatile matter loss then decomposition of EPDM. Kinetic parameters of the thermal decomposition were approximated by the Coats Redfern equation. Activation energy and decomposed mass increases with decreasing content of CB. Vulcanized EPDM with CB as filler has fairly good resistance against thermal decomposition. The decomposition process can be viewed in detail in this paper.

Keywords: EPDM, thermal decomposition, kinetic, thermogravimetric, carbon black.

 


Full Text:

PDF

References


Ahiduzzaman, M., & Islam, A. K. M. S. (2015). Thermo-gravimetric and kinetic analysis of different varieties of rice husk. Procedia Engineering, 105, 646–651, http://dx.doi.org/10.1016/j.proeng.2015.05.043

Aigbodion, V. S., & Hassan, S. B. (2012). Kinetics of isothermal degradation studies by thermogravimetric data : effect of orange peels ash on thermal properties of high density polyethylene. Journal Material Environment Science, 3(6): 1027–36.

Alneamah, M., & Almaamori, M. (2015). Study of thermal stability of nitrile rubber/polyimide compounds. International Journal of Materials and Chemistry, 5(1), 1–3. http://dx.doi.org/10.5923/j.ijmc.20150501.01

Aziz, A., & Basfar. (2005). Thermal stability of radiation vulcanized EPDM rubber. Arab International Conference on Polymer Science & Technology, 18–19.

Brostow, W., Datashvili, T., & Geodakyan, J., & Lou, J. (2011). Thermal and mechanical properties of EPDM/PP + thermal shock-resistant ceramic composites. Journal of Material Science, 46, 2445–55.

http://dx.doi.org/10.1007/s10853-010-5091-2

Chaudary, R. G., Ali, P., Gandhare, N. V., Tanna, J. A., & Juneja, H. D. (2016). Thermal decomposition kinetics of some transition metal coordination polymers of fumaroyl bis (paramethoxyphenylcarbamide) using DTG / DTA techniques. Arabian Journal of Chemistry.

http://dx.doi.org/10.1016/j.arabjc.2016.03.008

Choi, S., Kim, J., & Woo, C. (2006). Accelerated thermal aging behaviors of EPDM and NBR vulcanizates. Bulletin of Korean Chemical Society. 2(6), 936–38.

Dijkhuis, K. A. J., Noordermeer, J. W. M., & Dierkes, W. K. (2009). The relationship between crosslink system, network structure and material properties of carbon black reinforced EPDM. European Polymer Journal, 45(11), 3302–12. http://dx.doi.org/10.1016/j.eurpolymj.2009.06.029

Dwivedi, G., & Sharma, M. P. (2016). Experimental investigation on thermal stability of pongamia biodiesel by thermogravimetric analysis. Egyptian Journal of Petroleum, 25(1).

http://dx.doi.org/10.1016/j.ejpe.2015.06.008

Gamlin, C., Markovic, M. G., Dutta, N. K., & Choudhury, N. R. (2000). Structural effects on the decomposition kinetics of EPDM elastomers by high-resolution TGA and modulated TGA. Journal of Thermal Analysis and Calorimetry, 59, 319–36. http://dx.doi.org/10.1023/A:1010164702571

Iqbal, J., Pandey, K. N., Verma, V., Singh, P., & Mishra, R. M. (2015). Physico-mechanical and thermal behaviour of binary blends of EPDM and LLDPE. European Journal of Advances in Engineering and Technology, 2(10), 43–48.

Jovanović, V., Simendić, J. B., Jovanović, S. S., Marković, G., & Cincović, M. M. (2009). The influence of carbon black on curing kinetics and thermal aging of acrylonitrile-butadiene rubber. Chemical Industry and Chemical Engineering Quarterly, 15(4), 283–89.

http://dx.doi.org/10.2298/CICEQ0904283J

Kahrizsangi, R. E., & Abbasi, M. H. (2008). Evaluation of reliability of coats-redfern method for kinetic analysis of non-isothermal TGA. Transactions of Nonferrous Metals Society of China, 18, 2–6.

Kandare, E., Kandola, B. K, Price, D., Nazare, S., & Horrocks, R. A. (2008). Study of the thermal decomposition of flame-retarded

unsaturated polyester resins by thermogravimetric analysis and Py-GC / MS. Polymer Degradation and Stability, 93, 1996–2006. http://dx.doi.org/10.1016/j.polymdegradstab.2008.03.032

Komalan, C., Elias, K., Thomas, K., Susan, V., & Thomas, S. (2008). Thermogravimetric and wide angle X-Ray diffraction analysis of thermoplastic elastomers from nylon copolymer and EPDM rubber. Polymer Degradation and Stability, 93(12), 2104–12. http://dx.doi.org/10.1016/j.polymdegradstab.2008.08.011

Li, C., Zhong, J., Yang, L., Li, S., & Kong, L. (2010). Studies on the properties and the thermal decomposition kinetics of natural rubber prepared with calcium chloride. E-Polymers, 72, 1–9.

Mayasari, H. E., & Yuniari, A. (2016). Effect of vulcanization system and carbon black on mechanical and swelling properties of EPDM blends. Majalah Kulit, Karet, dan Plastik, 32(1), 59–64. http://dx.doi.org/10.20543/mkkp.v32i1.706

Ning, N., Ma, Q., Zhang, Y., Zhang, L., & Wu, H. (2014). Enhanced thermo-oxidative aging resistance of EPDM at high temperature by using synergistic antioxidants. Polymer Degradation and Stability, 102, 1–8. http://dx.doi.org/10.1016/j.polymdegradstab.2014.01.037

Nowicki, L., & Markowski, M. (2012). Kinetic analysis of thermogravimetric data collected from bigger samples. Chemical and Process Engineering, 33(1), 85–94.

http://dx.doi.org/10.2478/v10176-012-0008-z

Paul, P., & Joseph, R. (2014). EPDM/CIIR blends: rheology, air permeability, thermal stability and thermal diffusivity. International Journal of Science, 3(4), 1359–70.

Poletto, M., Zattera A. J., & Santana, R. M. C. (2012). Bioresource technology thermal decomposition of wood: kinetics and degradation mechanisms. Bioresource Technology, 126, 7–12.

http://dx.doi.org/10.1016/j.biortech.2012.08.133

Povacz, M., Wallner, G. M., & Lang, R. W. (2014). Black-pigmented polypropylene materials for solar thermal absorbers – effect of carbon black concentration on morphology and performance properties. Solar Energy, 110, 420–26.

http://dx.doi.org/10.1016/j.solener.2014.09.024

Quan, C., Li, A., & Gao, N. (2013). Combustion and pyrolysis of electronic waste : thermogravimetric analysis and kinetic model. Procedia Environmental Sciences, 18, 776–82.

http://dx.doi.org/10.1016/j.proenv.2013.04.104

Sangwichien, C., Sumanatrakool, P., & Patarapaiboolchai, O. (2008). Effect of filler loading on curing characteristics and mechanical properties of thermoplastic vulcanizate. Chiang Mai Journal Science, 35(1), 141–49.

Sholeh, M., Sugihartono, & Supraptiningsih. (2015). Thermogravimetric study of decomposition kinetics of unsaturated polyester with kaolin and sawdust as filler. Prosiding Seminar Nasional Kulit, Karet, dan Plastik, 115–24.

Slopiecka, K., Bartocci, P., & Fantozzi, F. (2011). Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. International Conference on Applied Energy, 1687–98.

Sugama, T., Pyatina, T., Redline, E., Mcelhanon, J., & Blankenship, D. (2015). Degradation of different elastomeric polymers in simulated geothermal environments at 300 C. Polymer Degradation and Stability, 120, 328–39. http://dx.doi.org/10.1016/j.polymdegradstab.2015.07.010

Tibiletti, L., Longuet, C., Ferry, L., Coutelen, P., Mas, A., Robin, J., & Lopez-cuesta, J. (2011). Thermal degradation and fire behaviour of unsaturated polyesters filled with metallic oxides. Polymer Degradation and Stability, 96, 67–75. http://dx.doi.org/10.1016/j.polymdegradstab.2010.10.015

Vijayalekshmi, V., & Majeed, S. S. M. (2013). Mechanical, thermal and electrical properties of EPDM / Silicone blend nanocomposites. International Journal of Engineering Research and Applications, 3(2), 1177–80.

Yao, F., Wu, Q., Lei, Y., Guo, W., & Xu, Y. (2008). Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability, 93, 90–98. http://dx.doi.org/10.1016/j.polymdegradstab.2007.10.012

Zhou, L., Wang, Y., Huang, Q., & Cai, J. (2006). Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Processing Technology, 87, 963–69.

http://dx.doi.org/10.1016/j.fuproc.2006.07.002




DOI: http://dx.doi.org/10.20543/mkkp.v32i2.1591

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 hesty eka mayasari, Arum Yuniari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

MKKP indexed by:

Cover Page Cover Page     Cover Page    Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page     Cover Page    Cover Page    Cover Page    Cover Page     Cover Page     Cover Page   Cover Page   Cover Page   Cover Page   Cover Page              

 

 

 

Free counters!