PENGOLAHAN AIR LIMBAH INDUSTRI KARTON BOX DENGAN METODE INTEGRASI UPFLOW ANAEROBIC SLUDGE BED REACTOR (UASB) DAN ELEKTROKOAGULASI-FLOTASI

Hanny Vistanty, Aris Mukimin, Novarina Irnaning Handayani

Abstract


            Penelitian ini bertujuan untuk menginvestigasi kinerja teknologi integrasi Upflow Anaerobic Sludge Bed Reactor (UASB) dengan elektrokoagulasi-flotasi (ECF) sebagai unit pengolah air limbah industri karton box dalam berbagai kondisi operasi. Sebelum diaplikasikan, unit UASB diawali dengan proses aklimatisasi selama 7 hari menggunakan dua jenis substrat, yaitu gula dan pati. Operasional UASB secara kontinyu dilakukan pada berbagai OLR dan HRT konstan (24 jam). Air limbah terproses UASB kemudian dielektroflotasi menggunakan anoda alumunium (Al) dan besi (Fe). Optimalisasi proses ECF dikaji pada berbagai variabel pH dan waktu elektrolisis. Proses UASB dengan susbtrat pati menunjukkan efektivitas aklimatasi yang tinggi dibanding subtrat gula. Kondisi steady-state akan tercapai setelah 6 hari operasional dengan efisiensi penurunan COD 91% dan OLR 25 kg COD/m3 hari. Aplikasi UASB secara kontinyu telah mampu menurunkan COD 94% dengan waktu tinggal 24 jam. Proses ECF mampu menurunkan COD air limbah terolah UASB sekitar 70-81%. Kondisi optimum penurunan COD tercapai pada pH 7,5  untuk anoda Al dan pH 6 atau 9 untuk anoda Fe. Penambahan waktu elektrolisis di atas 10 menit sangat mempengaruhi efektivitas penurunan COD untuk anoda Fe sedangkan anoda Al tidak terjadi penurunan yang signifikan.  Jumlah sludge yang dihasilkan oleh proses ECFsebanyak 4 kg/m3 untuk anoda Al dan 5 kg/m3 untuk anoda Fe. Biaya kebutuhan energi berkisar antara 4,5 hingga 18 kWh/m3dan konsumsi elektroda sebanyak 0,17 kg Al/m3 atau 0,515 kg Fe/m3. Integrasi UASB dan ECF berpotensi untuk diaplikasikan sebagai sistem pengolahan air limbah industri karton box yang efektif.

 



Keywords


metode integrasi; elektrokimia; UASB; air limbah industri karton box

Full Text:

PDF

References


Aiyuk, S. et al., 2004. Removal of carbon and nutrients from domestic wastewater using a low investment , integrated treatment concept. Water Research, 38, pp.3031–3042.

APHA, (American Public Health Association), 1999. Standard Methods for the Examination of Water and Wastewater. , 16th ed, p.Washington DC, USA.

Boroski, M. et al., 2008. The effect of operational parameters on electrocoagulation-flotation process followed by photocatalysis applied to the decontamination of water effluents from cellulose and paper factories. Journal of Hazardous Materials, 160(1), pp.135–141.

Chayada, L. et al., 2013. Wastewater Treatment For Flexographic Printing Factory by Adsorption with Corn Cob Charcoal. ACA, pp.323–326.

Emamjomeh, M.M. & Sivakumar, M., 2009. Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. Journal of Environmental Management, 90(5), pp.1663–1679.

Fendri, I. et al., 2013. Optimization of coagulation-flocculation process for printing ink industrial wastewater treatment using response surface methodology. African Journal of Biotechnology, 12(30), pp.4819–4826.

Fontes Lima, D.M., Moreira, W.K. & Zaiat, M., 2013. Comparison of the use of sucrose and glucose as a substrate for hydrogen production in an upflow anaerobic fixed-bed reactor. International Journal of Hydrogen Energy, 38(35), pp.15074–15083.

Fontes Lima, D.M. & Zaiat, M., 2012. The influence of the degree of back-mixing on hydrogen production in an anaerobic fixed-bed reactor. International Journal of Hydrogen Energy, 37(12), pp.9630–9635.

Gavala, H.N. & Lyberatos, G., 2001. Influence of anaerobic culture acclimation on the degradation kinetics of various substrates. Biotechnology and Bioengineering, 74(3), pp.181–195.

Gerardi, M., 2003. The microbiology of anaerobic digesters, Available at: http://medcontent.metapress.com/index/A65RM03P4874243N.pdfnhttp://books.google.com/books?hl=en&lr=&id=kHRhlkmT0ggC&oi=fnd&pg=PR7&dq=The+microbiology+of+anaerobic+digesters&ots=5M0H7VTOWa&sig=cEqUWD31PFh6rbnZIYSjsiwlArA.

Gilboa, Y., 1999. Treatment of cardboard plant wastewater. Filtration and Separation, 36(6), pp.20–22.

Kalyuzhnyi, S. et al., 2005. Integrated biological ( anaerobic – aerobic ) and physico-chemical treatment of baker ’ s yeast wastewater. Water Science & Technology, 52(10-11), pp.19–23.

Karabacakoğlu, B. & Tezakıl, F., 2014. Reduction of COD from Corrugated Box Manufacturing Plant Wastewater using Chemical Coagulation. Journal of Selcuk University Natural and Applied Science, pp.936–945.

Khandegar, V. & Saroha, A.K., 2013. Electrocoagulation for the treatment of textile industry effluent - A review. Journal of Environmental Management, 128, pp.949–963.

Liu, Y. et al., 2003. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Research, 37(3), pp.661–673.

Mansour, L. Ben & Kesentini, I., 2008. Treatment of effluents from cardboard industry by coagulation-electroflotation. Journal of Hazardous Materials, 153(3), pp.1067–1070.

Mukimin, A., 2006. Pengolahan Limbah Industri Berbasis Logam Dengan Teknologi Elektrokoagulasi Flotasi. UNDIP.

Noike, T. et al., 1985. Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnology and bioengineering, 27(10), pp.1482–1489.

Oktem, Y.A. et al., 2008. Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor. Bioresource Technology, 99(5), pp.1089–1096.

Penteado, E.D. et al., 2013. Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. International Journal of Hydrogen Energy, 38(14), pp.6137–6145.

Phalakornkule, C. et al., 2010. Electrocoagulation of blue reactive, red disperse and mixed dyes, and application in treating textile effluent. Journal of Environmental Management, 91(4), pp.918–926.

Prica, M. et al., 2015. The electrocoagulation/flotation study: The removal of heavy metals from the waste fountain solution. Process Safety and Environmental Protection, 94(July), pp.262–273.

Renault, F. et al., 2009. Chitosan flocculation of cardboard-mill secondary biological wastewater. Chemical Engineering Journal, 155(3), pp.775–783.

Roussy, J. et al., 2005. Treatment of ink-containing wastewater by coagulation/flocculation using biopolymers. Water SA, 31(3), pp.369–376.

Saratale, G. et al., 2007. Biodegradation of kerosene by Aspergillus ochraceus NCIM-1146. Journal of Basic Microbiology, 47(5), pp.400–405.

Saratale, R.G. et al., 2011. Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), pp.138–157.

Sklyar, V., Epov, A., Gladchenko, M., Danilovich, D., K.S., 2003. Combined biologic (anaerobic-aerobic) and chemical treatment of starch industry wastewater. Applied Biochemistry and Biotechnology, 109(1-3), pp.253–262.

Taylor, P., Blonskaja, V. & Zub, S., 2009. Journal of Environmental Engineering and Landscape Management Possible ways for post ‐ treatment of biologically treated wastewater from yeast factory. Journal of Environmental Engineering and Landscape Management, 17(4), pp.189–197.

Teeratitayangkul, P. & Sopajaree, K., 2010. COD Removal of Cardboard Factory Wastewater by Upflow Anaerobic Filter. The Third CMU Graduate Research Conference, pp.434–438.

Xia, Y. et al., 2012. Effects of substrate loading and co-substrates on thermophilic anaerobic conversion of microcrystalline cellulose and microbial communities revealed using high-throughput sequencing. In International Journal of Hydrogen Energy. pp. 13652–13659.

Zodi, S. et al., 2013. Direct red 81 dye removal by a continuous flow electrocoagulation /flotation reactor. Separation and Purification Technology, 108, pp.215–222.

Zongo, I. et al., 2009. Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: Compared variations of COD levels, turbidity and absorbance. Journal of Hazardous Materials, 169(1-3), pp.70–76.




DOI: http://dx.doi.org/10.21771/jrtppi.2015.v6.no1.p1%20-%208

Refbacks

  • There are currently no refbacks.


JRTPPI INDEXED BY :

 photo doaj_logo_zps1elblh0p.pngresearcherid photo Crossref_Logoresearcherid

   


Copyright of Research Journal of Industrial Pollution Prevention Technology (p-ISSN 2087-0965 | e-ISSN 2503-5010). Powered by OJS, Theme design credited to MEV edited by JRTPPI

 

           Creative Commons License