Kemampuan Isolat Bakteri Haloferax Spp dalam Meningkatkan Kemurnian Garam NaCl untuk Bahan Baku Industri

Nilawati Nilawati, Marihati Marihati, Rizal Awaludin Malik

Abstract


Garam yang dihasilkan oleh peladangan garam rakyat tidak memenuhi standar kemurnian (84-90%), maka diperlukan pencucian garam untuk meningkatkan kemurnian NaCl yang akan digunakan sebagai bahan baku industri. Pencucian garam akan menghasilkan air   limbah yang dibuang ke lingkungan sebanyak 1,5 m3 untuk 10 ton garam yang dicuci. Peladangan garam dengan menggunakan bantuan mikroorganisme yang hidup pada salinitas tinggi (halofilik) merupakan suatu teknologi alternatif dalam produksi garam NaCl yang memiliki kemurnian yang tinggi dan ramah lingkungan. Penelitian ini bertujuan untuk mengetahui kualitas garam NaCl yang dihasilkan berdasarkan kemampuan bakteri Halococcus spp dalam mempengaruhi faktor-faktor fisika-kimiapada saat proses kristalisasi garam. Penelitian ini terbagi atas dua tahap yaitu penentuan jumlah starter untuk kristalisasi dan percobaan kristalisasi. Parameter yang di ukur adalah absorbansi (OD 600), kemurnian NaCl hasil kristalisasi, kekentalan larutan garam (oBe), kekeruhan (transmittance), warna kristal, dan pengamatan mikroskopis. Variabel yang digunakan pada penelitian pertama adalah komposisi inokulum yang akan digunakan sebagai starter, dan variabel pada penelitian kedua merupakan variabel pembanding yaitu air garam tua dengan penambahan konsorsium halofilik, penambahan nutrisi LB (Luria berthani) dan kontrol berupa air garam tua. Hasil penelitian menunjukan bahwa komposisi terbaik untuk proses kristalisasi adalah konsentrasi isolat 10% dan penambahan pada proses kristalisasi sebanyak 1%. Pada penelitian kedua kenaikan kekentalan larutan garam tercepat diperoleh pada perlakuan Halococcus spp dan kontrol+LB, kekeruhan tertinggi didapatkan oleh perlakuan konsorsium halofilik, dan kekompakan kristal garam yang terbaik dihasilkan oleh perlakuan Halococcus spp. Kemurnian NaCl yang dihasilkan dari penambahan bakteri Halococcus spp memiliki nilai tertinggi dibandingkan perlakuan lainnya yaitu 94,64%, sementara perlakuan dengan menggunakan konsorsium bakteri halofilik sebesar 92,84%, kontrol dengan penambahan nutrisi LB 92,51% dan kontrol 91%.

 

Kata kunci :Halococcus spp;Halofilik;Garam NaCl;Ramah lingkungan


Keywords


Haloferax spp; Halofilik; Garam NaCl; Ramah lingkungan

Full Text:

PDF (Indonesian)

References


Abid, O., Sellami-Kammoun, A., Ayadi, H., Drira, Z., Bouain, A., & Aleya, L. (2008). Biochemical adaptation of phytoplankton to salinity and nutrient gradients in a coastal solar saltern, Tunisia. Estuarine, Coastal and Shelf Science, 80(3), 391–400. http://doi.org/10.1016/j.ecss.2008.09.007

Castanier, S., Perthuisot, J. P., Rouchy, J. M., Maurin, A., & Guelorget, O. (1992). Halite ooids in Lake Asal, Djibouti: Biocrystalline build-UPS. Geobios, 25(6), 811–821. http://doi.org/10.1016/S0016-6995(92)80063-J

Coelho, Ricardo, J., Hillario, Mauro, R., & Duarte, Nuno, R. (2014). Solar salt works integrated management - SSWIM. In Solar salt works & The Economic Value of Biodiversity (pp. 58–65). http://doi.org/10.2307/1313369

Das sarma, S. (2001). Halophiles. In Encyclopedia of Life Science (Vol. 1, pp. 1–9). Nature Publishing Group.

Davis, J. S. (1974). Importance of microorganisms in solar salt production. In Symposium on salt, Vol. 1 (pp. 369–372).

Davis, J. S. (2009). Management of Biological Systems for Continuously- Operated Solar Saltworks. Global Nest Journal, 11(1), 73–78.

Davis, J. S., & Giordano, M. (1995). Biological and physical events involved in the origin, effects, and control of organic matter in solar saltworks. International Journal of Salt Lake Research, 4(4), 335–347. http://doi.org/10.1007/BF01999117

Empadinhas, N., & Costa, M. S. (2008). Osmoadaptation mechanisms in prokaryotes : distribution of compatible solutes. International Microbiology, 11, 151–161. http://doi.org/10.2436/20.1501.01.55

Enache, M., Itoh, T., Kamekura, M., Popescu, G., & Dumitru, L. (2006). Halophilic Archaea of Haloferax Genus Isolated from Anthropogenic Telega ( Palada) Salt Lake. Proceedings of the Romanian Academy. Series B, 1(2), 11–16.

Giordano, M., Bargnesi, F., & Ratti, S. (2012). The Presence of the Green Algae Dunaliella salina in Crystallizer Ponds of Salinas can Appreciably Affect the Quality of NaCl Crystal. In N. Korovessis, S. Lauret, & W. Lox (Eds.), INTERNATIONAL CONFERENCE on BIODIVERSITY, SUSTAINABILITY & SOLAR SALT (pp. 2–8). Sevilla.

González-Hernández, J. C., Cárdenas-Monroy, C. A., & Peña, A. (2004). Sodium and potassium transport in the halophilic yeast Debaryomyces hansenii. Yeast, 21(5), 403–412. http://doi.org/10.1002/yea.1108

Götzfried, F., & Kondorosy, E. (2009). Recrystallization Process for the Upgrading of Rock And Solar Salts. In 9th International Symposium on Salt (pp. 1–17).

Gunde-Cimerman, N., Oren, A., & Plemenitas, A. (2005). ADAPTATION TO LIFE AT HIGH SALT CONCENTRATIONS. (N. Gunde-Cimerman, A. Oren, & A. Plemenitas, Eds.) (9th ed.). Springer Heidelberg.

Indonesia, S. N., & Nasional, B. S. (2017). Garam bahan baku untuk industri garam beryodium.

Javor, B. J. (2002). Industrial microbiology of solar salt production. Journal of Industrial Microbiology & Biotechnology, 28(1), 42–47. http://doi.org/10.1038/sj/jim/7000173

Jehlicka, J., Edwards, H. G. M., Osterrothova, K., Novotna, J., Nedbalova, L., Kopecky, J., Oren, A. (2017). Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2030), 20140199–20140199. http://doi.org/10.1098/rsta.2014.0199

Klein, B. C., Walter, C., Lange, H. A., & Buchholz, R. (2012). Microalgae as natural sources for antioxidative compounds. Journal of Applied Phycology, 24(5), 1133–1139. http://doi.org/10.1007/s10811-011-9743-7

Klykov, S. P., Skladnev, A. D., & Kurakov, V. V. (2012). A model of energy limitation and population structuring to estimate phototrophic growth of industrially significant Halobacterium salinarum strains. International Research Journal of Biochemistry and Bioinformatics, 2(5), 109–121.

Kunte, H. J., Trüper, H. G., & Stan-lotter, H. (2004). Halophilic Microorganisms. Water, 7, 185–199. http://doi.org/10.1007/978-3-642-59381-9

Kushner, D. J. (1966). Mass Culture of Red Halophilic Bacteria ”. BIOTECHNOLOGY AND BIOENGINEERING, 245(8981), 237–245.

Lopez-Cortes, A., & Ochoa, J, L. (1998). The biological significance of Halobacteria on nucleation and sodium chloride crystal growth. Surface Science and Catalysis, 120, 903–923.

Mani, K., Salgaonkar, B. B., & Braganca, J. M. (2012). Culturable halophilic archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa , India. Aquatic Biosystems, 8(15), 1–8.

Mani, K., Salgaonkar, B. B., Das, D., & Bragança, J. M. (2012). Community solar salt production in Goa, India. Aquatic Biosystems, 8(1), 30. http://doi.org/10.1186/2046-9063-8-30

Marihati, Harihastuti, N., Muryati, Nilawati, Eddy, S., & Hermawan, Danny, W. (2014). Penggunaan Bakteri Halofilik Sebagai Biokatalisator Untuk Meningkatkan Kualitas dan Produktifitas Garam NaCl di Meja Kristalisasi. Jurnal Riset Industri, 8(3), 191–196.

Naziri, D., Hamidi, M., Hassanzadeh, S., Tarhriz, V., & Zanjani, B. M. (2014). Analysis of Carotenoid Production by Halorubrum sp . TBZ126 ; an Extremely Halophilic Archeon from Urmia Lake. Advanced Pharmaceutical Bulletin, 4(1), 61–67.

Nilawati dan Marihati, (2017). Daur Ulang Limbah Cair IKM Garam Beryodium di Unit Pencucian Garam Bahan Baku. Prosiding Seminar Nasional Teknologi Industri Hijau 2. Retan Teknologi Ramah Lingkungan untuk Mendukung Industri Hijau. Vol. 1 No. 1, Agustus 2017. ISSN : 2549-9432. Balai Besar Teknologi Pencegahan Pencemaran Industri. Kemenperin RI.

Oren, A. (1994). The ecology of the extremely halophilic archaea. FEMS Microbiology Reviews, 13, 415–439. http://doi.org/10.1016/0168-6445(94)90063-9

Oren, A. (2010). Thoughts on the “Missing Link” Between Saltworks Biology and Solar Salt Quality. Global Nest Journal, 12(4), 417–425.

Roberts, M. F., Galinski, E., Martin, D., Ciulla, R., Roberts, M., Roberts, M., Brown, A. (2005). Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems, 1(1), 5. http://doi.org/10.1186/1746-1448-1-5

Rocha, R. D. M., Costa, D. F. S., Lucena-filho, M. A., Bezerra, R. M., Medeiros, D. H. M., Azevedo-silva, A. M., … Xavier-filho, L. (2012). Brazilian solar saltworks - ancient uses and future possibilities. Aquatic Biosystems, 8(8), 1–6.

Rodrigo-Baños, M., Garbayo, I., Vílchez, C., Bonete, M. J., & Martínez-Espinosa, R. M. (2015). Carotenoids from Haloarchaea and their potential in biotechnology. Marine Drugs, 13(9), 5508–5532. http://doi.org/10.3390/md13095508

Schneegurt, M. A. (2012). Advances in Understanding the Biology of Halophilic Microorganisms. In Advances in Understanding the Biology of Halophilic Microorganism (pp. 35–58). http://doi.org/10.1007/978-94-007-5539-0

Sedivy, V. M. (2009). Environmental Balance of Salt Production speaks in favour of Solar Saltworks. Global NEST Journal, 11(1), 41–48.

Shivanand, P., & Mugeraya, G. (2011). Halophilic bacteria and their compatible solutes -osmoregulation and potential applications. Current Science, 100(10), 1516–1521.

Sundaresan, S., Ponnuchamy, K., & Abdul, R. (2006). Biological management of sambhar lake saltworks (rajasthan, india). Managing, (October), 20–22.

Ventosa, A., & Oren, A. (2011). Halophiles and Hypersaline Environments. (Y. Ma, Ed.). Springer Heidelberg.

Waditee-Sirisattha, R., Kageyama, H., & Takabe, T. (2016). Halophilic microorganism resources and their applications in industrial and environmental biotechnology. AIMS Microbiology, 2(1), 42–54. http://doi.org/10.3934/microbiol.2016.1.42

Yang, Y., Cui, H. L., Zhou, P. J., & Liu, S. J. (2007). Haloarcula amylolytica sp. nov., an extremely halophilic archaeon isolated from Aibi salt lake in Xin-Jiang, China. International Journal of Systematic and Evolutionary Microbiology, 57(1), 103–106. http://doi.org/10.1099/ijs.0.64647-0

Yatsunami, R., Ando, A., Yang, Y., Takaichi, S., Kohno, M., Matsumura, Y., Nakamura, S. (2014). Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Frontiers in Microbiology, 5, 1–5. http://doi.org/10.3389/fmicb.2014.00100

Yeannes, Miaria, I., Ameztoy, Irene, M., Ramirez, Elida, E., & Felix, Monica, M. (2011). Culture alternative medium for the growth of extreme halophilic bacteria in fish products. Food Science31(3), 561–566. http://doi.org/10.1590/S0101-20612011000300002




DOI: http://dx.doi.org/10.21771/jrtppi.2017.v8.no2.p92-103

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JRTPPI INDEXED BY :

 photo doaj_logo_zps1elblh0p.pngresearcherid photo Crossref_Logoresearcherid

   


Copyright of Research Journal of Industrial Pollution Prevention Technology (p-ISSN 2087-0965 | e-ISSN 2503-5010). Powered by OJS, Theme design credited to MEV edited by JRTPPI

 

           Creative Commons License