Analisis Penggunaan Quicklime Sebagai Adsorben Uap Asam Pada Sum Pit Water Treatment Plant PLTGU

Adhi Setiawan


Pencemaran udara yang disebabkan oleh uap HCl dapat menyebabkan gangguan terhadap kesehatan maupun permasalahan korosi pada peralatan. Pemanfaatan quicklime sebagai adsorben menjadi alternatif yang murah dan cukup efektif dalam menurunkan emisi uap HCl. Permasalahan muncul ketika korosi sangat sering terjadi pada peralatan-peralatan di sekitar area WTP akibat adanya kandungan HCl hasil residu reaksi saat regenerasi yang terbuang dalam sump pit. HCl memiliki sifat yang mudah menguap dan sangat korosif sehingga timbul uap asam di sekitar sump pit yang menginisiasi terjadinya korosi pada peralatan-peralatan sekitar area WTP. Penelitian ini bertujuan untuk mengetahui kapasitas adsorpsi tertinggi dengan menggunakan quicklime 22% dan quicklime 52% dengan variasi ukuran partikel 100 mesh dan 200 mesh. Hasil analisa XRD menunjukkan bahwa produk reaksi yang terbentuk pada proses adsorpsi berupa CaClOH. Produk tersebut terbentuk akibat reaksi CaO dan Ca(OH)2 di dalam quicklime dengan uap HCl. Meningkatkan kemurnian quicklime dan menurunkan ukuran partikel mengarah pada meningkatnya kapsitas adsorpsi terhadap uap HCl. Hasil analisa dengan metode TGA menunjukkan bahwa quicklime B2 dengan kemurnian 52% dan ukuran 200 mesh memiliki kapasitas adsorpsi yang tertinggi diantara sampel quicklime yang lain yaitu sebesar 12,1% dari massa quicklime


Adsorbsi; quicklime; HCl; TGA

Full Text:

PDF (Indonesian)


Aihara M., Nagai T., Matsushita J., Negishi Y., and Ohya H., (2001), Development of Porous Solid Reactant For Thermal-Energy Storage and Temperature Upgrade Using Carbonation/Decarbonation Reaction, J. of Applied Energy, 69, pp. 225–238

Alvarez D., and Abanades J.C., (2005), Determination of the Critical Product Layer Thickness in the Reaction of CaO with CO2, Industrial Engineering and Chemistry Research, 44, pp. 5608–5615

Batidzirai B., Mignot A.P.R., Schakel W.B., Junginger H.M., and Faaij A.P.C., (2013), Biomass Torrefaction Technology: Techno-Economic Status and Future Prospects, J. of Energy, 62, pp. 196-214

Baxter L., (2005), Biomass-Coal Co-Combustion: Opportunity for Affordable Renewable Energy, J. of Fuel, 84, pp. 1295–1302

Chen D., Gao X., and Dollimore D., (1993), The Application of non-isothermal Methods of Kinetic Analysis to The Decomposition of Calcium Hydroxide, Thermochimica Acta, 215, pp. 65-82

Chibante V.G., Fonseca A.M, and Salcedo R.R., (2009), Comparing the Performance of Recirculating Cyclones Applied to The Dry Scrubbingof Gaseous HCl with Hydrated Lime, J.of Industrial and Engineering Chemistry Research, 48, pp. 1029 -1035

Chyang C.S., Han Y.L., and Zhong Z.C., (2009), Study of HCl Absorption by CaO at High Temperature, J. of Energy Fuel, 23, pp. 3948–39 53

Galan I., Perron L., and Glasser F.P., (2015), Impact of Chloride-Rich Environments on Cement Paste Mineralogy, Cement and Concrete Research, 68, pp. 174–183

Gullett B.K., Jozewicz W., and Stefanski L.A., (1992), Reaction kinetics of Ca-based sorbents with HCl, J. of Industrial and Engineering Chemistry Research, 31, pp. 2437–2446

Han R., Sun F., Gao J., Wei S., and Su Y., (2017), Effect of The Presence of NaCl Vapour on Indirect Sulphationof Limestone, J. of Fuel Processing Technology, 160, pp. 39–46

Hsu C.J., and Hsiau S.S., (2011), Experimental Study of The Gas Flow Behavior in the Inlet of a Granular Bed Filter, J. of Advanced Powder Technology, 22, pp. 741–752

Huang C.H., Chang K.P., Yu C.T., Chiang P.C., and Wang C.F., (2010), Development of High-Temperature CO2 Sorbents Made of CaO-Based Mesoporous Silica, Chemical Engineering Journal, 161, pp. 129-135

Jiang X.G., Yan J.H., Li X.P., Liu B.C., Lu S.Y., Chi Y., and Cen K.F., (2005), Experimental Study of HCl Emission and Removal on Incinerating of Typical MSW Components in Fluidized Bed, In:Proceedings of the 18th International Conference on Fluidized Bed Combustion,Toronto, Canada, pp. 867– 872

Li Y., Wang W., Cheng X., Su M., Ma X., and Xie X., (2015), Simultaneous CO2/HCl Removal Using Carbide Slag in Repetitive Adsorption/Desorption Cycles, J. of Fuel, 142, pp. 21-27

Mikhail R.Sh., Brunauer S., and Copeland L.E., 1966, Kinetics of the Thermal Decomposition of Calcium Hydroxide, J. of Colloid and Interface Science, 21, pp. 394-404

Moropoulou A., Bakolas A., and Aggelakopoulou E., (2001), The Effects of Limestone Characteristics and Calcination Temperature to The Reactivity of The Quicklime, Cement and Concrete Research,31, pp. 633-639

Moyeda D.K., Seeker W.R., England G.C., and Linz D.G., (1990), The Formation and Control of PCDD/PCDF from RDF-Fired Combustion Systems. J. of Chemosphere, 20, pp. 1817-1824

Partanen J., Backman P., Backman R., and Hupa M., (2005), Absorption of HCl by Limestone in Hot Flue Gases. Part I: The Effects of Temperature, Gas Atmosphere and Absorbent Quality, J. of Fuel, pp. 1664-1673

Ren Xiaohan., Sun Rui., Chi H.H., Meng Xiaoxiao., Li Yupeng, and Levendis Y.A., (2017), Hydrogen Chloride Emissions From Combustion of Raw and Torrefied Biomass, J. of Fuel, 200, pp. 37-46

Roesch A., Reddy E.P., and Smirniotis P.G., (2005), Parametric Study of Cs/CaO Sorbents with Respect to Simulated Flue Gas at High Temperatures, J. of Industrial and Engineering Chemistry. 44, pp. 6485–6490

Salvador C., Lu D., Anthony E.J., and Abanades J.C., (2003), Enhancement of CaO for CO2 Capture in an FBC Environment, Chemical Engineering Journal, 96, pp. 187–195.

Shearer J.A., Johnson I., and Turner C.B., (1979), Effects of Sodium chloride on Limestone Calcination and Sulfation in Fuidized-Bed Combustion, J. of Environmental Science Technology, 13, pp. 1113–1118

Shih S.M., Ho C.S., Song Y.S., and Lin J.P., (1999), Kinetics of the Reaction of Ca(OH)2 with CO2 at Low Temperature, Industrial and Engineering Chemistry Research, 38, pp. 1316-1322

Sondreal E.A., Benson S.A., Hurley J.P., Mann M.D., Pavlish J.H., and Swanson M.L., (2001), Review of Advances in Combustion Technology and Biomass Cofiring, J. of Fuel Process Technology,71, pp. 7–38

Soud H.N., (1994), FGD Installations on Coal-fired Plants, 2nd ed., IEA Coal Research, London

Tan J., Yang G., Mao J., and Dai H., (2014), Laboratory Study on High-Temperature Adsorption of HCl by Dry-Injection of Ca(OH)2 in a Dual-Layer Granular Bed Filter, Frontiers of Enviromental Science and Engineering, 8, pp. 863-870

Tillman D.A., Duong D., and Miller B., (2009), Chlorine in Solid Fuels Fired in Pulverized Fuel Boilers Sources, Forms, Reactions, and Consequences: a literature review. Energy Fuels, 23, pp. 3379-3391

Wang W., Ye Z., and Bjerle I., (1996), The Kinetics of The Reaction of Hydrogen Chloride with Fresh and Spent Ca-based Desulfurization Sorbents, J. of Fuel, 75, pp. 207–212

Wey M.Y., Liu K.Y., Yu W.J., Lin C.L., and Chang F.Y., (2008), Influences of Chlorine Content on Emission of HCl and Organic Compounds in Waste Incineration Using Fluidized Beds, J. of Waste Management, 28, pp. 406-415



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 photo doaj_logo_zps1elblh0p.pngresearcherid photo Crossref_Logoresearcherid


Copyright of Research Journal of Industrial Pollution Prevention Technology (p-ISSN 2087-0965 | e-ISSN 2503-5010). Powered by OJS, Theme design credited to MEV edited by JRTPPI


           Creative Commons License