Potensi Biogas dari Limbah Padat Industri Kelapa Sawit di Kalimantan Timur
Abstract
Kalimantan Timur merupakan provinsi dengan luas terbesar keempat di Indonesia dengan Kelapa Sawit sebagai komoditi perkebunan utama yang menguasai 88,4 dan 99,6% dari total luas areal dan total komoditinya. Potensi yang besar ini akan berdampak besar terutama pada sektor lingkungan yang disebabkan oleh besarnya limbah yang dihasilkan. Penelitian ini bertujuan untuk mencari besaran potensi limbah untuk konversi biogas yang terfokus kepada limbah padat Industri kelapa sawit di provinsi Kalimantan Timur (Kaltim). Dari 10 kabupaten kota penghasil sawit di Kaltim, terdapat total limbah padat sebesar 800 juta ton di tahun 2019. Di Kaltim sudah ada beberapa industry kelapa Sawit yang memiliki biogas plan yang biasanya terintegrasi dengan pengolahan limbah cair. Potensi besar yang masih belum dimanfaatkan secara optimal adalah limbah padat, dimana menguasai 60% dari total limbah yang dihasilkan. Limbah padat ini memiliki potensi yang besar untuk dikembangkan, dan sesuai untuk digunakan sebagai bahan baku di reaktor biogas dengan proses Anaerobik. Limbah padat Industri kelapa sawit berupa TKKS, Serat dan dekanter memiliki potensi menghasilkan 506; 204; dan 41 juta meter kubik metan di tahun 2019. Jika dikonversikan, maka dari ketiga limbah padat tersebut dapat menghasilkan energi sebesar 8 GWatt.
Keywords
Full Text:
PDF (Indonesian)References
Abbassi-guendouz, Amel et al. 2012. Total Solids Content Drives High Solid Anaerobic Digestion via Mass Transfer Limitation. Bioresource Technology, 111, 55–61.
Ali, Ahmad Amiruddin Mohd, Mohd Ridzuan Othman, Yoshihito Shirai, and Mohd Ali Hassan. 2015. Sustainable and Integrated Palm Oil Biorefinery Concept with Value-Addition of Biomass and Zero Emission System. Journal of Cleaner Production, 91, 96–99.
Brown, Dan, Jian Shi, and Yebo Li. 2012. Bioresource Technology Comparison of Solid-State to Liquid Anaerobic Digestion of Lignocellulosic Feedstocks for Biogas Production. Bioresource Technology, 124, 379–86.
Chaikitkaew, Srisuda, Prawit Kongjan, and Sompong O-Thong. 2015. Biogas Production from Biomass Residues of Palm Oil Mill by Solid State Anaerobic Digestion. Energy Procedia, 79, 838–44.
Direktur Jenderal EBTKE. 2015. Biogas: Turning Waste into Benefit.
Disbun Kaltim. 2019. Statistik Perkebunan Provinsi Kalimantan Timur. Dinas Perkebunan Provinsi Kalimantan Timur,.
Haider, Muhammad Rizwan et al. 2015. Effect of Mixing Ratio of Food Waste and Rice Husk Co-Digestion and Substrate to Inoculum Ratio on Biogas Production. Bioresource Technology, 190, 451–57.
Heryadi, Eko, and Pawinee Chaiprasert. 2017a. Methane Production Potential of Oil Palm Mesocarp Fiber Using Variuos Seed Inoculums and Pretreatments. South East Asian Technical University Consortium Symposium (SEATUC), (1), 1–7.
———. 2017b. Potential of Methane Production of Oil Palm Decanter Cake (OPDC) under Various Inoculum Seeds and Pretreatments. Biotechnology International Congress (BIC), (1), 1–6.
———. 2020. Enhancement of Methane Production from High Solid Anaerobic Digestion of Pretreated Palm Oil Decanter Cake Using a Modified Solid Inclined Reactor. Journal of Chemical Technology & Biotechnology, 95, 781–90.
Iskandar, Muhammad Johan, Azizah Baharum, Farah Hannan Anuar, and Rizafizah Othaman. 2018. Palm Oil Industry in South East Asia and the Effluent Treatment Technology—A Review. Environmental Technology and Innovation, 9, 169–85.
Jabeen, Maliha et al. 2015. High-Solids Anaerobic Co-Digestion of Food Waste and Rice Husk at Different Organic Loading Rates. International Biodeterioration and Biodegradation, 102, 149–53.
Jenkins, Bryan M et al. 2008. Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste. California Integrated Waste Management Board, (March), 1–75.
Office of Agricultural Economics (OAE) of Thailand. 2016. Agricultural Statistics of Thailand 2016. Office of Agricultural Economics, 1–240.
Paepatung, Nuntiya, Annop Nopharatana, and Warinthorn Songkasiri. 2009. Bio-Methane Potential of Biological Solid Materials and Agricultural Wastes. As. J. Energy Env, 10(01), 19–27.
R. Sudrajat, Erra Y, Umi K, Evi K. 2003. 179794-ID-Produksi-Biogas-Dari-Limbah-Pengolahan-k.Pdf. Penelitian Hasil Hutan, 21(3), 227–37.
Sally, Novian Uticha. 2020. Sengketa Minyak Sawit Antara Indonesia Dan Uni Eropa. University of Darussalam Gontor,.
Suksong, Wantanasak, Prawit Kongjan, and Sompong O-Thong. 2015. Biohythane Production from Co-Digestion of Palm Oil Mill Effluent with Solid Residues by Two-Stage Solid State Anaerobic Digestion Process. Energy Procedia, 79, 943–49.
United States Department of Agriculture. 2021. Oilseeds: World Markets and Trade. Foreign Agricultural Service, (May), 1–40.
USDA. 2016. Data & Analysis | USDA Foreign Agricultural Service.
Wu, Qibai et al. 2017. Sustainable and Renewable Energy from Biomass Wastes in Palm Oil Industry: A Case Study in Malaysia. International Journal of Hydrogen Energy, 44, 1–7.
Zeshan, Obuli P Karthikeyan, and Chettiyappan Visvanathan. 2012. Effect of C/N Ratio and Ammonia-N Accumulation in a Pilot-Scale Thermophilic Dry Anaerobic Digester. Bioresource Technology, 113, 294–302.
Zwart, Ronald. 2013. Opportunities and Challenges in the Development of a Viable Malaysian Palm Oil Biomass Industry. Journal of Oil Palm and the Environment, 4, 41–46.
DOI: http://dx.doi.org/10.26578/jrti.v15i2.7361
Copyright (c) 2021 Jurnal Riset Teknologi Industri

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
JRTI is indexed by :
______________________________________________________________________
Akreditasi S2 Vol.10 No.1 th 2016 s/d Vol.14 No.2 th 2020. p-ISSN : 1978-6891, e-ISSN : 2541-5905.
Baristand Industri Samarinda