Perubahan sifat-sifat fisik dan mekanik kayu kemiri (Aleurites moluccanus (L.) Willd.) setelah perlakuan pemanasan dengan minyak [Changes of physical and mechanical properties of candlenut wood (Aleurites moluccanus (L.) Willd.) after oil-heat treatment]

Arjun Azis, A. Detti Yunianti, Agussalim Agussalim

Abstract


Candlenut wood is one of low quality wood species in term of strength and durability class of V-IV, so its utilization is limited. Efforts to improve physical and mechanical properties of wood are required. One way is using wood modification technology by oil-heat treatment. This research aim was to analyze the changes in physical and mechanical properties of candlenut wood after heating with oil. The stages of this research were sample pre-treatment, heating treatment and wood testing. Samples were pre-treated by heating gradually at 60°C and 90°C for 24 hours to avoid crack during treatment. The heat treatment was applied at several variation of temperatures, namely (160, 180, and 200)°C for 1 and 2 hours, respectively. Properties of wood were tested according to modified ASTM D143-94 standard. The Completely Randomized Design was used to determine effect of heat temperature and time on the wood properties. The results showed that heating with oil on candlenut wood gave a positive response, as evidenced by an increase in physical and mechanical properties of wood. Oil-heat treatment could be an effective method for improve properties of  wood. The increases of specific gravity, MOE and MOR were ranged from (16.49 to 26.62)%, (1.25 to 13.61)%, and (4.37 to 10.15)%, respectively. The use of 160°C increased properties of wood with relatively higher compared to other temperatures in 1 hour. Longer heating times tend to reduce properties of wood.

Keywords


candlenut wood; oil-heat treatment; physical-mechanical properties; temperature; time

Full Text:

PDF (Indonesian)

References


American Society for Testing Material. (2000). ASTM D143-94 (reapproved 2000): standard test methods for small clear specimens of timber. Annual book of ASTM standard. Philadelphia, PA: ASTM International.

Bak, M., & Nemeth R. (2012). Modification of wood by oil heat treatment. International Scientific Conference on Sustainable Development & Ecological Footprint (pp. 1-5). Sopron, Hungary: University of West Hungary.

Bazyar, B. (2012). Decay resistance and physical properties of oil heat treated aspen wood. BioResources, 7(1), 696–702. https://doi.org/10.15376/ biores.7.1.0696-0705

Calonego, F., Severo, E., & Ballarin, A. (2012). Physical and mechanical properties of thermally modified wood from Eucaliptus grandis. European Journal of Wood and Wood Products, 70(4), 453-460. https://doi.org/10.1007/s00107-011-0568-5

Cao, Y., Lu J., Huang R., Zhao X., & Jiang, J. (2012). Effect of steam-heat treatment on mechanical properties of chinese fir. BioResources, 7(1), 1123–1133. https://doi.org/10.15376/biores.7.1.1123-1133

Daud, M., & Coto, Z. (2009). Peningkatan sifat fisis dan mekanis kayu durian (Durio sp.) dengan penggorengan. Simposium Forum Teknologi Hasil Hutan (pp. 481-490). Bogor, Indonesia: Institut Pertanian Bogor.

Dewi, M. T. I., & Hidajati, N. (2012). Peningkatan mutu minyak goreng curah menggunakan adsorben bentonit teraktivasi. UNESA Journal of Chemistry, 1(2), 47–53.

Dubey, M. K. (2010). Improvements in stability, durability and mechanical properties of radiata pine wood after heat-treatment in a vegetable oil (Tesis Master). University of Canterbury, Christchurch, New Zealand.

Dubey, M. K., Pang, S., & Walker, J. (2012). Changes in chemistry, color, dimensional stability and fungal resistance of Pinus radiata D. Don wood with oil heat-treatment. Holzforschung, 66(1), 49–57. https://doi.org/ 10.1515/HF.2011.117

Hidayat, W., & Febrianto, F. (2018). Teknologi modifikasi kayu ramah lingkungan: modifikasi panas dan pengaruhnya terhadap sifat-sifat kayu. Bandar Lampung, Indonesia: Pusaka Media.

Hill, C. A. S. (2006). Wood modification: chemical, thermal and other processes. West Sussex, England: John Wiley & Sons, Ltd.

Humar, M., & Lesar, B. (2013). Efficacy of linseed-and tung-oil-treated wood against wodd-decay fungi and water uptake. International Biodeterioration & Biodegradation. 85, 223-227. https://doi.org/10.1016/j.ibod.2013.07.011

Jebrane, M., Fernández-Cano, V., Panov, D., Terziev, N., & Daniel, G. (2015). Novel Hydrophobization of wood by epoxidized linseed oil. Part 2. Characterization by FTIR spectroscopy and SEM, and determination of mechanical properties and field test performance. Holzforschung, 69(2), 179-186. https://doi.org/10.1515/hf-2014-0030

Kocaefe, D., Poncsak, S., & Boluk, Y. (2008). Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. BioResources, 3(2), 517–537. https://doi.org/10.15376/biores.3.2.517-537

Koji, T. (2002). Kemiri (Aleurites moluccana) and forest resource management in eastern indonesia: an eco-historical perspective. Asian and African Area Studies, 2(1), 5–23.

Lacic, R., Hasan, M., Trajkovic´, J., Sefc, B., Safran, B., & Despot, R. (2014). Biological durability of oil heat treated alder wood. Drvna Industrija, 65 (2) 143–150. https://doi.org/10.5552/drind.2014.1256

Lee, S. H., Ashaari, Z., Lum, W. C., Halip, J. A., Ang, A. F., Tan, L. P., ... Tahir, P. M. (2018). Thermal treatment of wood using vegetable oils: a review. Construction and Building Materials, 181(1), 408–419. https:// doi.org/10.1016/j.conbuildmat.2018.06.058

Mania, P., & Gąsiorek, M. (2020). Acoustic properties of resonant spruce wood modified using oil-heat treatment (OHT). Materials, 13(1962), 1-11. https://doi.org/10.3390/ma13081962

Martawijaya, A., Kartasujana, I., Kadir, K., & Prawira, S. A. (2005). Atlas kayu Indonesia jilid II. Pusat Penelitian dan Pengembangan Hasil Hutan, Bogor, Indonesia.

Octavia, Z., Anne-marie, B. L., & Beldean, E. (2011). Improvements in stability of the oil treated wood. Recent Researches in Energy, Environment and Landscape Architecture, Proceedings of the 4th IASME/WSEAS International Conference on Landscape Architecture (pp. 146-150). Angers, France: Institut National d'Horticulture et de Paysage.

Poletto, M., Júnior, H.L.O., & Zattera, A. J. (2014). Native cellulose: structure, characterization and thermal properties. Materials, 7(9), 6105–6119. https://doi.org/10.3390/ma7096105

Pratiwi, L. A. (2014). Sifat fisis, sifat mekanis dan sifat finishing kayu mindi (Melia azedarach L.) setelah perlakuan pemanasan (Skripsi Sarjana). Institut Pertanian Bogor, Bogor, Indonesia.

Priadi, T., & Maretha S. D. (2015). Sifat keawetan dan fisis-mekanis kayu kecapi dan rambutan setelah perlakuan pemanasan minyak sebagai upaya peningkatan mutu kayu ramah lingkungan. Jurnal Ilmu Teknologi Kayu Tropis, 13(2),146–160.

Sanberg, D., & Kutnar, A. (2016). Thermally modified timber: recent developments in europe and north america. Wood and Fiber Science, 48(1), 28-39. retrieved http://wfs.swst.org/index.php/wfs/article/view/2296

Sanberg, D., Kutnar, A., & Mantanis, G. (2017). Wood modification technologies - a review. iForest, 10(1), 895-908. https:// doi.org/10.3832/ifor2380-010

Sari, N., Erniwati, & Hapid, A. (2015). Sifat mekanika kayu kemiri (Aleurites mollucana Willd) asal sulawesi tengah berdasarkan arah aksial. Warta Rimba, 3(2), 73–79.

Schneid, E., de Cademartori, P. H. G., & Gatto, D. (2014). The effect of thermal treatment on physical and mechanical properties of Luehea divaricata hardwood. Maderas: Ciencia y Tecnologia, 16(4), 413–422. https:// doi.org/10.4067/S0718-221X2014005000033

Severo, E. T. D., Calonego, F. W., & Sansigolo, C. A. (2012). Physical and chemical changes in juvenile and mature woods of Pinus elliottii var. Elliottii by thermal modification. European Journal of Wood and Wood Products, 70(5), 741-747. https://doi.org/10.1007/s00107-012-0611-1

Shmulsky, R., & Jones, P. D. (2011). Forest product and wood science: An introduction 6th edition. West Sussex, England: John Wiley & Sons Ltd.

Sihombing, T. P. H., Hardjanto, H., & Wijayanto, N. (2013). Candlenut tree management on people forest in tanah pinem subdistrict, dairy regency, Indonesia.Jurnal Manajemen Hutan Tropika, 19(1), 46-53. https://doi.org/10.7226/jtfm.19.1.46

Tang, T., Chen, X., Zhang, B., Liu, L., & Fei, B. (2019). Research on the physico-mechanical properties of moso bamboo with thermal treatment in tung oil and its influencing factors. Materials, 12(4), 2–11. https://doi.org/ 10.3390/ma12040599

Tankut, N., Tankut, A. N., & Zor, M. (2014). Mechanical properties of heat-treated wooden material utilized in the construction of outdoor sitting furniture. Turkish Journal of Agriculture and Forestry, 38(1), 148–158. https://doi.org/10.3906/tar-1211-9

Temiz, A., Kose, G., Panov, D., Terziev, N., Alma, M. H., Palanti, S., & Akbas, S. (2013). Effect of bio-oil and epoxidized linseed oil on physical, mechanical and biological properties of treated wood. Journal of Applied Polymer Science, 130(3), 1562-1569. https://doi.org/10.1002/app.39334

Tjeerdsma, B. F., Swager, P., Horstman, B. J., Holleboom, B. W., & Homan, W. J. (2005). Process Development of Treatment of Wood With Modified Hot Oil. The 2nd European Conference on Wood Modification (pp. 1-10). Gὃttingen, Germany: University of Gὃttingen.

Tomak, E. D., Hughes, M., Yildiz, U. C., & Viitanen, H. (2011). The combined effects of boron and oil heat treatment on beech and scots pine wood properties. part 1: boron leaching, thermogravimetric analysis and chemical composition. Journal of Materials Science, 46(3), 598–607. https://doi.org/10.1007/s10853-010-4859-8

Umar, I., Zaidon, A., Lee, S. H., & Halis, R. (2016). Oil-heat treatment of rubberwood for optimum changes in chemical constituents and decay resistance. Journal of Tropical Forest Science, 28(1), 88–96.

Wahab, R., Ghani, R. S. M., Rasat, M. S. M., & Samsi H. W. (2017). Changes in the features of oil heat treated 18-years old Acacia mangium. Research Journal of Pharmaceutical, Biological and Chemical Science, 8(2), 2093-2106.

Wahab, R., Khalid, I., Alamjuri, R. H., Sulaiman, O., Aminuddin M., & Hassan, A. (2011). Effects of hot oil treatment on colour and chemical changes in 15-year-old acacia hybrid. Journal of Tropical Forest Science, 23(1), 42–50.

Wahab, R., Khalid, I., Sudin, M., Rasat, M. S. M., Sulaiman, O., & Tabert, T. A. (2012). Changes in strength and chemical contents of oil heat treated 15-year-old cultivated acacia hybrid. International Journal of Chemistry, 4(2), 90-100. https://dx.doi.org/10.5339/ijc.v4n2p90

Wahyudi, I., & Sitanggang, J. J. (2016). Kualitas kayu meranti merah (Shorea leprosula Miq.) hasil budi daya. Jurnal Ilmu Pertanian Indonesia (JIPI), 21(2), 140-145. https://doi.org/10.18343/jipi.21.2.140

Youssefian, S., & Rahbar, N. (2015). Molecular origin of strength and stiffness in bamboo fibrils. Scientific Reports, 5(11116), 1-13. https://doi.org/10.1038/srep11116




DOI: http://dx.doi.org/10.24111/jrihh.v13i1.6785

Refbacks

  • There are currently no refbacks.




JRIHH INDEXED BY :

       
       


Published by BARISTAND INDUSTRI BANJARBARU (E-ISSN: 2503-0779 dan P-ISSN : 2086-1400).

 Creative Commons License