Karakteristik anatomi dan energi kayu dari tiga tumbuhan invasif [Anatomical and energi characteristics of wood from three invasive species]

Silmi Yusri Rahmadani, Alponsin Alponsin, Tesri Maideliza, Robby Jannatan

Abstract


The presence of invasive species is often seen as environmental and economic problem. On the other hand, the potential of these species which have fast growing and regeneration ability can be used for various purposes such as alternative bioenergy utilization. This study is aimed to observe the wood anatomical and energy characteristics of invasive species such as Melastoma malabathricum, L., Calliandra callothyrsus, Meissn and Acacia mangium, Willd. It is potentially utilized as source of alternative energy. This study used purposive sampling method, and used wood samples with the thickness of about ≥5 cm. This research was analyzed descriptively for anatomy characteristic whereas the diameter and frequency of vessel, heigh and width of parenchyma then calorific value, ash and moisture content analyzed using Kruskall Wallis and Mann Whitney. Anatomical characteristic of wood from two species were diffuse porous vessel, solitary and multiple vessel, frequency of vessel were rare to many and diameter of vessel were small to rather small and paratracheal axial parenchyma. Rays were uniseriate or biseriate with 1-3 seriate, height of ray category was extremely short and width rays were narrow to extremely narrow. All rays were homorocelular with upright or procumbent cells. The calorific value of these species started from 3,887.59 to 4,132.99 kal/g. Ash content start from 1.271.73% meanwhile the moisture content were 11.6–12.6%. Base on energy properties, Calliandra callothyrsus, Meissn. fulfilled the standard of bio pellet production base on SNI 8021 and EN- 14961-2.

Keywords


calorific value; invasive species; wood anatomy

Full Text:

PDF (Indonesian)

References


Amirta, R. (2018). Pelet kayu energi hijau masa depan. Samarinda: Mulawarman University Press.

Association Official Analitical Chemist. (1999). Official methods of analysis. 16 th ed.; AOAC International, Maryland USA: Author

Association Official Analitical Chemist. (2005). Official methods of analysis. (18 ed); AOAC International, Maryland USA: Author

Aref, I. M., Salem, M. Z., Shetta, N. D., Alshahrani, T. S., & Nasser, R. A. (2017). Possibility of using three invasive non-forest tree species as an alternative source for energy production. Journal of Wood Science, 63(1), 104–114. https://doi.org/10.1007/s10086-016-1599-7

Bantacut, T., Djeni., H. & Rathi. N. (2013). The quality of biopellet from combination of palm shell charcoal and palm fiber. Jurnal Teknologi Industri Pertanian, 23 (1), 1-12

Barotto, A. J., Monteoliva, S., Gyenge, J., Martínez-Meier, A., Moreno, K., Tesón, N., & Fernández, M. E. (2017). Wood density and anatomy of three eucalyptus species: Implications for hydraulic conductivity. Forest Systems, 26(1), 1–11. https://doi.org/10.5424/fs/2017261-10446

Baruch, Z., Pattison, R. R., & Goldsteint, G. (2000). Responses to light and water availability of four invasive melastomataceae in the Hawaiian islands. International Journal of Plant Sciences, 161(1), 107–118. https://doi.org/10.1086/314233

Carlquist, S. (1975). Wood anatomy of onagraceae, with notes on alternative modes of photosynthate movement in dicotyledon woods author (s): Sherwin Carlquist Source : Annals of the Missouri Botanical Garden, (62)2 (1975), pp.386-424 Published by : Missouri. 62(2), 386–424.

Damayanti, R., Lusiana, N., & Prasetyo, J. (2017). Studi pengaruh ukuran partikel dan penambahan perekat tapioka terhadap karakteristik biopelet dari kulit coklat (Theobroma Cacao L.) sebagai bahan bakar alternatif terbarukan. Jurnal Teknotan, 11(1). https://doi.org/10.24198/jt.vol11n1.6

Davidson, A. M., Jennions, M., & Nicotra, A. B. (2011). Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters, 14(4), 419–431. https://doi.org/10.1111/j.1461-0248.2011.01596.x

Early, R., Bradley, B. A., Dukes, J. S., Lawler, J. J., Olden, J. D., Blumenthal, D. M., Gonzalez, P., Grosholz, E. D., Ibañez, I., Miller, L. P., Sorte, C. J. B., & Tatem, A. J. (2016). Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, 7. https://doi.org/10.1038/ncomms1248

EN 14961-2. (2013). Handbook for The Certification of Wood Pellets for Purposes (Version 2). Brussels

EN 14961-2. (2013). Handbook for the certification of wood pellets for purposes (version 2). Brussels

Fonti, P., Arx, G. Von, & Garcı, I. (2010). Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Pythologist, 185, 42–53.

Foxcroft LC, Richardson DM, Pyšek P, Genovesi P. (2013). Invasive alien plants in protected areas: threats, opportunities, and the way forward. In plant invasions in protected areas: patterns, problems and challenges. India: Springer Netherlands. 621–639

Gleason, S. M., Westoby, M., Jansen, S., Choat, B., Hacke, U. G., Pratt, R. B., Bhaskar, R., Brodribb, T. J., Bucci, S. J., Cao, K. F., Cochard, H., Delzon, S., Domec, J. C., Fan, Z. X., Feild, T. S., Jacobsen, A. L., Johnson, D. M., Lens, F., Maherali, H., … Zanne, A. E. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 209(1), 123–136. https://doi.org/10.1111/nph.13646

Hendrati, R. L., Suwandi, & Margiyanti. (2014). Budidaya kaliandra (Calliandra calothyrsus). Bogor: IPB Press

Islam, M. N., Ratul, S. B., Sharmin, A., Rahman, K. S., Ashaduzzaman, M., & Uddin, G. M. N. (2019). Comparison of calorific values and ash content for different woody biomass components of six mangrove species of Bangladesh Sundarbans. Journal of the Indian Academy of Wood Science, 16(2), 110–117. https://doi.org/10.1007/s13196-019-00246-9

Junaidi, Ariefin, & Mawardi, I. (2017). Pengaruh persentase perekat terhadap karakteristik pellet kayu dari kayu sisa gergajian. Jurnal Mesin Sains Terapan, 1(1), 13–17.

Kotowska, M. M., Hertel, D., Rajab, Y. A., Barus, H., & Schuldt, B. (2015). Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth. Frontiers in Plant Science, 6, 191

Krisdianto & Balfas, J. (2016). Anatomical properties and fibre quality of wood and hanging roots of beringin (Ficus benjamina Linn.). Jurnal Ilmu Pertanian Indonesia, 21(1), 13–19. https://doi.org/10.18343/jipi.21.1.13

Mandang, Y.I., Ratih D, Tajudin EK & Siti N. (2008). Pedoman identifikasi kayu ramin dan kayu mirip ramin. Bogor: Departemen Kehutanan Badan Penelitian dan Pengembangan Kehutanan Bekerja Sama Dengan International Tropical Timber Organization (ITTO).

Marsoem, S. N., & Irawati, D. (2016). Basic properties of Acacia mangium and Acacia auriculiformis as a heating fuel. AIP Conference Proceedings, 1755. https://doi.org/10.1063/1.4958551

Meerbeek, K. Van, Sciences, E., & Leuven, K. U. (2015). On the map biomass of invasive plant species as a potential feedstock for bioenergy production. 273–282. https://doi.org/10.1002/bbb

Morris, H. R. (2016). The structure and function of ray and axial parenchyma in woody seed plants. Dissertation. ULM.

Morris, H., Gillingham, M. A. F., Plavcová, L., Gleason, S. M., Olson, M. E., Coomes, D. A., Fichtler, E., Klepsch, M. M., Martínez-Cabrera, H. I., McGlinn, D. J., Wheeler, E. A., Zheng, J., Ziemińska, K., & Jansen, S. (2018). Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant Cell and Environment, 41(1), 245–260. doi.org/10.1111/pce.13091

Mukaromah, L., & Imron, M. A. (2020). Invasive plant species in the disturbed forest of Batukahu Nature Reserve, Bali, Indonesia. Biotropia, 27(1), 22–32. https://doi.org/10.11598/btb.2020.27.1.933

Nasser, R. A., & Aref, I. M. (2014). Fuelwood characteristics of six acacia species growing wild in the Southwest of Saudi Arabia as affected by geographical location. BioResources, 9(1), 1212–1224. https://doi.org/10.15376/biores.9.1.1212-1224

Nasional, B.S. (2014). SNI ISO 8021: 2014. Pelet Kayu. Indonesia. Badan Standardisasi Nasional.

Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., Poot, P., Purugganan, M. D., Richards, C. L., Valladares, F., & van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15(12), 684–692. https://doi.org/10.1016/j.tplants.2010.09.008

Nirsatmanto, A., Sunarti, S., & Praptoyo, H. (2017). Wood anatomical structures of tropical acacias and its implication to tree breeding. International Journal of Forestry and Horticulture, 3(3), 9–16.

Nisgoski, S., Magalhães, W. L. E., Batista, F. R. R., França, R. F., & Muñiz, G. I. B. de. (2014). Anatomical and energy characteristics of charcoal made from five species. Acta Amazonica, 44(3), 367–372. https://doi.org/10.1590/1809-4392201304572

Salleo, S., Lo Gullo, M.A., Trifilo`, P., Nardini, A. (2004). New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. Plant, Cell and Environment, 27: 1065–1076

Sari, N. M., Kuspradini, H., Amirta, R., & Kusuma, I. W. (2018). Antioxidant activity of an invasive plant, Melastoma malabathricum and its potential as herbal tea product. IOP Conference Series: Earth and Environmental Science, 144(1). https://doi.org/10.1088/1755-1315/144/1/012029

Savage, V. M., Bentley, L. P., Enquist, B. J., Sperry, J. S., Smith, D. D., Reich, P. B., & von Allmen, E. I. (2010). Hydraulic trade‐offs and space filling enable better predictions of vascular structure and function in plants. Proceedings of the National Academy of Sciences of the United States of America, 107, 22722–22727

Schmitz, Nele. (2012). “Re: What is the best alternative to Astra blue in double stainingofSafraniAstrablueforwoodanatomystudy?.Retrievedfromhttps://www. researchgate.net/post/What_is_the_best_alternativeto_Astra_blue_in_double_staining_of_SafraninAstra_blue_for_wood_anatomy

Scholz, F. G., Phillips, N. G., Bucci, S. J., Meinzer, F. C., & Goldstein, G. (2011). Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size. Tree Phisiology, 341–361. https://doi.org/10.1007/978-94-007-1242-3_13

Schreiber, S. G., Hacke, U. G., & Hamann, A. (2015). Variation of xylem vessel diameters across a climate gradient: Insight from a reciprocal transplant experiment with a widespread boreal tree. Functional Ecology, 29(11), 1392–1401. https://doi.org/10.1111/1365-2435.12455

Silva, M. (2015). Systematic wood anatomy of Huberia, Miconia and Tibouchina (Melastomataceae). IAWA Journal, 36(3), 326-337, https://doi.org/10.1163/22941932-20150103

Stepanova, A. V, Oskolski, A. A., Tilney, P. M., & Wyk, B. Van. (2013). Wood anatomy of the tribe Podalyrieae (Fabaceae, Papilionoideae): Diversity and evolutionary trends. South African Journal of Botany. https://doi.org/10.1016/j.sajb.2013.07.023

Steppe, K., & Lemeur, R. (2007). Effects of ring-porous and diffuse-porous stem wood anatomy on the hydraulic parameters used in a water flow and storage model. Tree Physiology, 27(1), 43–52. https://doi.org/10.1093/treephys/27.1.43

Sunaryo, Uji, T., & Tihurua, E. F. (2012). Komposisi jenis dan potensi ancaman tumbuhan asing invasif di taman nasional gunung Halimun-Salak, Jawa Barat. Berita Biologi, 11(2), 231–239.

Thiffault, E., Barrette, J., Blanchet, P., Nguyen, Q. N., & Adjalle, K. (2019). Optimizing quality of wood pellets made of hardwood processing residues. Forests, 10(7), 1–19. https://doi.org/10.3390/f10070607

Vilà, M., Espinar, J.L., Hejda, M., Hulme, P.E., Jarošík, V., Maron, J.L., & Pysek, P. (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters 14(7): 702–8. https://doi.org/10.1111/j.1461-0248.2011.01628

Von Arx, G., Archer, S. R., & Hughes, M. K. (2012). Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Annals of Botany, 109(6), 1091–1100. https://doi.org/10.1093/aob/mcs030

von Arx, G., Arzac, A., Olano, J. M., & Fonti, P. (2015). Assessing conifer ray parenchyma for ecological studies: Pitfalls and guidelines. Frontiers in Plant Science, 6(November), 1–10. https://doi.org/10.3389/fpls.2015.01016

Wangkhem, M., Sharma, M., & Lal Sharma, C. (2020). Comparative wood anatomical properties of genus syzygium (family Myrtaceae) from Manipur, India. Indonesian Journal of Forestry Research, 7(1), 27–42. https://doi.org/10.20886/ijfr.2020.7.1.27-42

Wheeler, E.A., Baas, P., & Gasson, P.E. (1989). IAWA list of microscopic features for hardwood identification. International Association of Wood Anatomists bulletin new series, 10(3), 219-332

Wheeler, E.A., Bass, P., Rodgers, S. (2007). Variations in dicot wood anatomy: a global analysis based on the Inside Wood database. IAWA Journal, 28, 229–248

Yazdani, M. G., Hamizan, M., & Shukur, M. N. (2012). Investigation of the fuel value and the environmental impact of selected wood samples gathered from Brunei Darussalam. Renewable and Sustainable Energy Reviews, 16(7), 4965–4969. https://doi.org/10.1016/j.rser.2012.04.025

Zheng, J., & Martínez-Cabrera, H. I. (2013). Wood anatomical correlates with theoretical conductivity and wood density across China: Evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany, 112(5), 927–935. https://doi.org/10.1093/aob/mct153

Zimmermann, M. H., & Jeje, A. A. (1981). Vessel‐length distribution in stems of some American woody plants. Canadian Journal of Botany, 59, 1882–1892




DOI: http://dx.doi.org/10.24111/jrihh.v13i1.6469

Refbacks

  • There are currently no refbacks.




JRIHH INDEXED BY :

       
       


Published by BARISTAND INDUSTRI BANJARBARU (E-ISSN: 2503-0779 dan P-ISSN : 2086-1400).

 Creative Commons License