Sifat fisik dan mekanik balok lamina dari batang kelapa sawit berdasarkan jumlah lapisan [ The physical and mechanical properties of laminated lumber from oil palm trunk based on the number of layers]

Dwi Harsono, Hamlan Ihsan, Miyono Miyono, Evy Setiawati

Abstract


The total area of oil palm plantations in 2019 is 14.2 million hectares. Every 25 years, there is always oil palm plantations replanting that produced oil palm trunks. The potential of oil palm trunks used as raw material for laminated lumber is about 52.5% of the total of oil palm biomass. Oil palm trunks have a very low density, so that it needs special processing before it could be applied as building material or other uses. The purpose of this study is to analyze the physical and mechanical properties of laminated lumber from oil palm trunks at the end position based on the number of layers. The method used in this research was the utilization of oil palm trunks lamination using PVAc (polyvinyl acetate) adhesive with variations of 1, 2, 3, and 4 layers. The results showed that oil palm trunks could be used as raw material for laminated lumber. The characteristics of laminated lumber made from 1, 2, 3, and 4 layers range between: moisture content (12.1613.6) %, density (1.2810.331) g/cm3, MoR (65.46116.54) kg/cm2, and compressive strength parallel to its fibers (43.31114,66) kg/cm2. The physical properties of the oil palm trunks laminated lumber with the increasing number of layers tends to increase the density and reduce the moisture content, rather than oil palm trunks laminated lumber with a smaller number of layers. The increasing number of oil palm trunks layers lamination increase the value of laminated lumber mechanical properties.

Keywords


oil palm trun; laminated lumber; physical-mechanical properties; number of layers

Full Text:

PDF (Indonesian)

References


Abdullah, N., & Sulaiman, F. (2013). The oil palm wastes in Malaysia. In Biomass Now - Sustainable Growth and Use. M. D. Matovic (Ed.) (pp. 75–100). Intech: Rijeka, Croatia.

Abdurachman, A., Hadjib, N., Jasni, J., & Balfas, J. (2015). Sifat balok komposit kombinasi bambu dan kayu. Jurnal Penelitian Hasil Hutan, 33(2), 115–124.

American Society for Testing Materials (ASTM) (2005). Standard test methods of static tests of lumber in structural sizes (ASTM D 198-05). Philadelphia: American Society for Testing and Materials International.

Badan Pusat Statistik, [BPS]. (2018). Statistik kelapa sawit Indonesia 2017 (Subdirektorat Statistik Tanaman Perkebunan (ed.); 2017th ed.). Badan Pusat Statistik.

Bakar, E. S. (2003). Kayu sawit sebagai substitusi kayu dari hutan alam. Forum komunikasi Teknologi dan Industri Kayu Jurusan Teknologi Hasil Hutan Fakultas Kehutanan IPB, Bogor. (Volume 2/1/Juli 2003). Bogor, Indonesia: Institut Pertanian Bogor.

Bakar, E. S., Febrianto, F., Wahyudi, I., & Ashaari, Z. (2006). Polygon sawing: an optimum sawing pattern for oil palm stems. Journal of Biological Sciences, 6(4), 744–749.

Chai, L. Y., H’Ng, P. S., Lim, C. G., Chin, K. L., Jusoh, M. Z., & Bakar, E. S. (2011). Production of Oil Palm Trunk Core Board with Wood Veneer Lamination. Journal of Oil Palm Research, 23, 1166–1171.

Darmawan, M. (2020). Indonesia plantations. Retrieved from https://www.nhsec.co.id/wp-content/uploads/2020/05/Plantation_20200520_NHKSI_Industry_Report_CPO-Will-Fluctuate-Until-the-Third-Quarter-English.pdf diakses tanggal 2 September 2020

Darwis, A, Massijaya, M. Y., Nugroho, N., & Alamsyah, E. M. (2014). Karakteristik papan laminasi dari batang kelapa sawit. Jurnal Ilmu Teknologi Kayu Tropis, 12(2), 157–168.

Dungani, R., Abdul Khalil, H. P. S., Islam, M. N., Sumardi, I., Aditiawati, P., & Hadiyane, A. (2016). Soil burial degradation of oil palm shell (OPS) nanofiller and phenol formaldehyde (PF) resin-impregnated oil palm trunk lumber (OPTL): Dimensional stability and mechanical properties. Journal of Biobased Materials and Bioenergy, 10, 1–7. https://doi.org/10.1166/jbmb.2016.1585

Endy, Diba, F., & Muflihati. (2014). Sifat fisik dan mekanik batang kelapa sawit (Elais guineesis Jacq) berdasarkan pada posisi ketinggian batang. Jurnal Hutan Lestari, 2(2), 249–256.

Erwinsyah. (2008). Improvement of oil palm wood properties using bioresin (Ph.D Dissertation). Faculty of Enviromental Sciences, Technische Universität Dresden, Dresden, Germany.

Farfan, J.H. (2019). Impact of fire and haze on agricultural productivity in Indonesia after the fire of 2015 (MSc Thesis). Wageningen University.

Fathi, L. (2014). Structural and mechanical properties of the wood from coconut palms, oil palms and date palms (Doctor Dissertation). Hamburg, University of Hamburg, Germany

Harsono, D. (2012). Pemanfaatan batang kelapa dan kayu karet sebagai bahan baku gluam. Jurnal Riset Industri Hasil Hutan, 4(2), 23–30.

Harsono, D. (2016). Efektifitas pengawetan batang kelapa sawit (Elaeis guinensis Jacq.) terhadap serangan rayap tanah (Coptotermes curvignathus Holmgren) menggunakan campuran boraks dan asam borat. Jurnal Riset Industri Hasil Hutan, 8(2), 87–98. https://doi.org/10.24111/jrihh.v8i2.2159

Hartono, R., Erwinsyah, Hidayat, W., & Damayanti, R. (2019). Effect of impregnation methods and bioresin concentration on physical and mechanical properties of soft-inner part of oil palm trunk. Journal of Physics: Conference Series, 1282. https://doi.org/10.1088/1742-6596/1282/1/012078

Hartono, R., & Sucipto, T. (2014). Pemanfaatan limbah batang kelapa sawit melalui teknologi pemadatan dalam rangka menghasilkan produk lamina berkualitas (Laporan Akhir). Medan: Lembaga Penelitian Universitas Sumatera Utara, Medan.

Hartono, R., Wahyudi, I., Febrianto, F., Dwianto, W., Hidayat, W., Jang, J.-H., … Kim, N.-H. (2014). Quality Improvement of oil palm trunk properties by close system compression method. Journal of the Korean Wood Science and Technology, 44(4), 172–183. https://www.cabdirect.org/cabdirect/abstract/20143285017

Hasibuan, M. (2017). Pengaruh ketinggian batang dan jumlah lapisan terhadap sifat fisis dan sifat mekanis papan laminasi dari batang kelapa sawit (Elaeisguineensis Jacq) dengan perekat polyvinyl acetate (PVAc). (Skripsi Sarjana). Universitas Sumatera Utara, Medan.

Iskandar, M. I., & Supriadi, A. (2017). The Effect of Wood Species and the Number of Layer for Laminated Veener Properties. Jurnal Ilmu Pertanian Indonesia, 22(1), 34–40. https://doi.org/10.18343/jipi.22.1.34

Iswanto, A. H, Sucipto, T., Azhar, I., Coto, Z., & Febrianto, F. (2010). Sifat fisis dan mekanis batang kelapa sawit (Elaeis guineensis Jacq) asal kebun Aek Pancur-Sumatera Utara. Jurnal Ilmu Dan Teknologi Hasil Hutan, 3(1), 1–7.

JAS-Japanese Agricultural Standard. (2003). Glued laminated timber (JAS 234:2003). Ministry of Agriculture, Forestry, and Fisheries, Tokyo, Japan.

Jinsin, J., Fazli, M., & Rohan, S. (2018). Modulus of elasticity (MOE) of particleboard from oil palm stalk/skewer (Elaeis guineenis). Wood Technology, Engineering and Science Social, WoTES Edisi 1. (pp.39–45). Kinabalu, Malaysia: Politeknik Kota Kinabalu

Massijaya, M. Y. (2014). Pengembangan produk komposit untuk mendukung industri pengolahan kayu Indonesia (Orasi Ilmiah). Institut Pertanian Bogor, Bogor.

Nuryawan, A., Dalimunthe, A., & Saragih, R. N. (2012). Sifat fisik dan kimia ikatan pembuluh pada batang kelapa sawit. Foresta, Indonesian Journal of Forestry, 1(2), 34–40.

Omar, N. S., Bakar, E. S., Jalil, N., Tahir, P., Zin, W., & Yunus, W. (2011). Distribution of oil palm starch for different levels and portions of oil palm trunk. Wood Research Journal, 2(2), 73–77.

Oramahi, H. A. (2016). Optimasi dengan RSM dan rancangan percobaan (aplikasi dengan SPSS dan SAS). Yogyakarta: Penerbit Gava Media.

Persson, M., & Wogelberg, S. (2011). Analytical models of pre-stressed and reinforced glulam beams: a competitive analysis of strengthened glulam beams (Master's Thesis). Chalmers University of Technology, Goteborg, Sweden.

Prabuningrum, D. S., Massijaya, M. Y., Hadi, Y. S., & Abdillah, I. B. (2020). Physical-mechanical properties of laminated board made from oil palm trunk (Elaeis guineensis jacq.) waste with various lamina compositions and densifications. Journal of the Korean Wood Science and Technology, 48(2), 196–205. https://doi.org/10.5658/WOOD.2020.48.2.196

Rachmawati, O., Sugita, P., & Santoso, A. (2018). Peningkatan kualitas kayu sawit dengan perlakuan kompregnasi menggunakan tanin resorsinol formaldehida. Jurnal Penelitian Hasil Hutan, 36(3), 181–190.

Risnasari, I., Azhar, I., & Sitompul, A. (2012). Karakteristik balok laminasi dari batang kelapa (Cocos Nucifera L.) dan kayu kemiri (Aleurites moluccana Wild.) (Characteristics of glued laminated beams of coconut trunk (Cocos nucifera L.) and candlenut wood (Aleurites moluccana Wild.). Foresta, 1(2), 79–87.

Sandberg, D. (2016). Additives in wood products—today and future development. In Environmental impacts of traditional and innovative forest-based Bioproducts (pp. 105–172). Springer. https://doi.org/10.1007/978-981-10-0655-5_4

Siregar, M. S. (2011). Penguatan sifat mekanik kayu kelapa sawit dengan teknik impregnasi reaktif monomer stirena. Agrium, 16(3), 147–152.

Srivaro, S., Chaowana, P., Matan, N., & Kyokong, B. (2014). Lightweight sandwich panel from oil palm wood core and rubberwood veneer face. Journal of Tropical Forest Science, 26(1), 50–57.

Sucipto, T., Hartono, R., Dwianto, W., & Darmawan, T. (2015). Karakteristik papan laminasi batang kelapa sawit dengan variasi pelapis luar dan berat labur perekat. Seminar Nasional Mapeki XVII. Prosiding Seminar Nasional MAPEKI XVII, (pp. 96–104). Medan, Indonesia: Universitas Sumatera Utara.

Sulastiningsih, I. M., Novitasari, & Turoso, A. (2006). Pengaruh kadar perekat terhadap sifat papan partikel bambu. Jurnal Penelitian Hasil Hutan, 24(1), 1–8. https://doi.org/10.20886/jphh.2013.31.1.19-26

Sulastiningsih, I. M., & Santoso, A. (2012). Pengaruh jenis bambu, waktu kempa dan perlakuan pendahuluan bilah bambu terhadap sifat papan bambu lamina. Jurnal Penelitian Hasil Hutan, 30(3), 198–206.

The Timber Industry Standards Commitee. (1957). British Standard-Methods of Testing Small Clear Specimens of Timber. BS 373:195. London: British Standard Institution.

Wahab, R., Samsi, H. W., Mustafa, M. T., Yusof, M., Sulaiman, O., Khalid, I., & Rasat, S. M. (2015). Properties of oil palm frond and kenaf bast bio-composites boards. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(6), 851–862.

Wulandari, A., & Erwinsyah, E. (2020). Analisis sebaran serabut vaskular dan sifat fisik batang kelapa sawit varietas DxP pada berbagai zona dan ketinggian batang. Jurnal Penelitian Kelapa Sawit, 28(1), 1–14. https://doi.org/10.22302/iopri.jur.jpks.v28i1.93

Yamada, H., Tanaka, R., Sulaiman, O., Hashim, R., Hamid, Z. A. A., Yahya, M. K. A., ... Mori, Y. (2010). old oil palm trunk: a promising source of sugars for bioethanol production. Biomass and Bioenergy, 34(11), 1608–1613. https://doi.org/10.1016/j.biombioe.2010.06.011

Zaini, L. H., Hadi, Y. S., Mubarak, M., & Sunaryo, A. (2017). Pengaruh jenis dan konsentrasi zat aditif perekat dari kulit sapi pada kayu laminasi jabon. Jurnal Ilmu Teknologi Kayu Tropis, 15(1), 89–96.




DOI: http://dx.doi.org/10.24111/jrihh.v13i1.6157

Refbacks

  • There are currently no refbacks.




JRIHH INDEXED BY :

       
       


Published by BARISTAND INDUSTRI BANJARBARU (E-ISSN: 2503-0779 dan P-ISSN : 2086-1400).

 Creative Commons License