Pembuatan dan pemanfaatan arang limbah kayu untuk menjerap gas metan pada lahan tanaman padi [The production and utilization of charcoal derived from wood waste to absorb methane gas in rice fields]

Heri Soedarmanto, Dr. Evy Setiawati, M.T., Wahida Annisa, Dwi Harsono

Abstract


Abstrak. Lahan padi merupakan sumber terbesar dari emisi CH4 dan berkontribusi terhadap 12% total emisi tahunan. Salah satu cara untuk untuk mengurangi emisi gas metan adalah dengan pemberian arang. Tujuan dari penelitian ini adalah menganalisis pengaruh arang perendaman berbahan baku serbuk limbah kayu terhadap penurunan emisi gas metan pada lahan padi. Limbah serbuk kayu yang digunakan dalam penelitian ini berukuran 0,42-1,00 mm dan dipirolisis selama 2 jam pada suhu (350-550)oC. Arang yang dihasilkan (kondisi panas) kemudian direndam menggunakan air selama 30 menit. Arang hasil perendaman kemudian disaring dan dikering-udarakan. Tanah sulfat masam ditambahkan arang hasil perendaman sesuai dosis perlakuan. Perlakuan penelitian adalah (1) kontrol tanah, tanpa arang perendaman (K0); (2) 30 gram arang perendaman + tanah (K1); (3) 60 gram arang perendaman + tanah (K2); (4) 90 gram arang perendaman + tanah (K3); (5) 120 gram arang perendaman + tanah (K4); (6) 150 gram arang perendaman + tanah (K5). Pengamatan terhadap emisi gas metan dilakukan selama 30, 60, dan 90 Hari Setelah Tanam (HST). Untuk mengetahui pengaruh suhu dan perendaman arang terhadap kualitas arang yang dihasilkan serta mengetahui dosis arang terhadap emisi gas metan digunakan Rancangan Acak Lengkap. Hasil penelitian menunjukkan bahwa seiring dengan peningkatan suhu pirolisis, nilai pH, kadar abu, dan fixed-C semakin meningkat, sedangkan hidrogen dan oksigen menurun. Perendaman arang menghasilkan produk arang dengan pori-pori relatif lebih banyak dan terstruktur. Fluks metan menurun seiring bertambahnya dosis arang perendaman, yaitu 22,57 mg/m2/hari menjadi 9,73 mg/m2/hari pada 30 HST, 55,07 mg/m2/hari menjadi 13,40 mg/m2/hari pada 60 HST, dan 92,51 mg/m2/hari menjadi 19,59 mg/m2/hari pada 90 HST.

Kata Kunci : arang perendaman; limbah kayu; fluks metan

 

Abstract. Rice fields are the largest source of CH4 emissions and contribute to 12% of total annual emissions. Providing charcoal treatment is one way to reduce methane emissions. The purpose of this study was to analyze the soaked charcoal derived from wood waste to reduce methane gas emissions of rice fields. The sawdust used in this study was 0.42-1.00 mm and pyrolyzed for 2 hours at (350-550)oC. The resulted charcoal in a heat condition was then soaked using water for 30 minutes, filtered, and dried. The soaked charcoal was added according to the dosage given. The research treatments were (1) soil control, without soaked charcoal (K0); 30 grams soaked charcoal + soil (K1); (3) 60 grams soaked charcoal + soil (K2); (4) 90 grams soaked charcoal + soil (K3); (5) 120 grams soaked charcoal + soil (K4); (6) 150 grams soaked charcoal + soil (K5). Observations on methane gas emissions were carried out for 30, 60, and 90 Days After Planting (DAP). The Completely Randomized Design was used to determine the effect of temperature and soaking of charcoal on the charcoal quality and to determine the dose of charcoal on methane gas emissions. The results showed that with the increase in pyrolysis temperature, pH, ash content, and fixed-C increased, while hydrogen and oxygen increased. The soaked charcoal had larger and higher structured pore. Methane flux was increased as the increasing of soaked charcoal at 30, 60, 90 DAP, which were (22.57 to 9.73) mg/m2/day, (55.07 to 13.40) mg/m2/day, and (92.51 to 19.59) mg/m2/day, respectively.

Keywords : soaked charcoal; wood waste; methane flux


Keywords


soaked charcoal; wood waste; methane flux

Full Text:

PDF (Indonesian)

References


Annisa, W., & Nursyamsi, D. (2016). Pengaruh amelioran, pupuk dan sistem pengelolaan tanah sulfat masam terhadap hasil padi dan emisi metana. Jurnal Tanah dan Iklim, 40(2), 135–145.

Asian Development Bank. (2016). Nepal : mainstreaming climate change risk management in development TA - 7984 NEP : Mainstreaming climate change risk management in development - Consultants for Sustainable Rural Ecology for Green Growth. UK.

Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R., & Westgate, M. E. (2013). Assessing potential of charcoal for increasing water- holding capacity of sandy soils. GCB Bioenergy, 5(2), 132–143. https://doi.org/10.1111/gcbb.12026.

Berek, A. K., & Hue, N. (2016). Characterization of charcoals and their use as an amendment to acid soils. Soil Science, 181(10), 1–15. https://doi.org/10.1097/SS.0000000000000177

Brewer, C. E., Schmidt-rohr, K., Satrio, J. A., & Brown, R. C. (2009). Characterization of charcoal from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy, 28(3), 386–396. https://doi.org/10.1002/ep

Bridges, R. (2013). Design and characterisation of an ‘open source’ pyrolyser for charcoal production. Massey University, Auckland, New Zealand

Butnan, S., Deenik, J., L., Toomsan, B., Antal, M. J., Vityakon, P. (2016). Charcoal properties influencing greenhouse gas emissions in tropical soils differing in texture and mineralogy. Journal of Environmental Quality, 45, 1509-1519. doi:10.2134/jeq2015.10.0532

Calamai, A., Chiaramonti, D., Casini, D., & Masoni, A. (2020). Short-term effects of organic amendments on soil properties and maize (Zea maize L.) growth. Agriculture, 10(158), 1–15. https://doi.org/10.3390/agriculture10050158

Chowdhury, Z. Z., Karim, M. Z., Ashraf, M. A., & Khalid, K. (2016). Influence of carbonization temperature on physicochemical properties of charcoal derived from slow pyrolysis of durian wood (Durio zibethinus) sawdust. Bioresources, 11(2), 3356–3372.

Cong, W., Meng, J., & Ying S C. (2018). Impact of soil properties on soil methane flux response to charcoal addition: a meta- analysis. Environmental Science: Process & Impacts, 20(9): 1202-1209. https://doi.org/10.1039/C8EM00278A

Crombie, K., Mašek, O., Sohi, S. P., Brownsort, P., & Cross, A. (2013). The effect of pyrolysis conditions on charcoal stability as determined by three methods. GCB Bioenergy, 5(2), 122–131. https://doi.org/10.1111/gcbb.12030

Dufour, A., Castro-Diaz, M., Marchal, P., Brosse, N., Olcese, R., Bouroukba, M., & Snape, C. (2012). In situ analysis of biomass pyrolysis by high temperature rheology in relations with 1 H NMR. Energy & Fuels, 6432–6441.

Dutta, T., Kwon, E., Bhattacharya, S. S., Jeon, B. H., Deep, A., Uchimiya, M., & Kim, K-H. (2017). Polycyclic aromatic hydrocarbons and volatile organic compounds in charcoal and charcoal-amended soil: a review. GCB Bioenergy, 9(6), 990-1004

Edmunds, C. W. (2012). The effects of charcoal amendment to soil on bioenergy crop yield and biomass composition. University of Tennessee.

Feng, Y., Xu, Y., Yu, Y., Xie, Z., & Lin, X. (2012). Mechanisms of charcoal decreasing methane emission from Chinese paddy soils. Soil Biology and Biochemistry, 46, 80–88. https://doi.org/10.1016/j.soilbio.2011.11.016

Gezahegn, S., Sain, M., & Thomas, S. C. (2019). Variation in feedstock wood chemistry strongly influences charcoal liming potential. Soil Systems, 3(26), 1–16. https://doi.org/10.3390/soilsystems3020026

Graber, E. R., Harel, Y. M., Kolton, M., Cytryn, E., Silber, A., David, D. R., … Elad, Y. (2010). Charcoal impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337(1), 481–496. https://doi.org/10.1007/s11104-010-0544-6

Hasan, M. H. M., Bachmann, R. T., Loh, S. K., Manroshan, S., & Ong, S. K. (2019). Effect of pyrolysis temperature and time on properties of palm kernel effect of pyrolysis temperature and time on properties of palm kernel shell-based charcoal. In International Rubber Conference (pp. 1–11). IOP Conference Series: Materials Science and Engineering 548. https://doi.org/10.1088/1757-899X/548/1/012020

Jeffery, S., Verheijen, F. G. A., Kammann, C., & Abalos, D. (2016). Charcoal effects on methane emissions from soils : a meta-analysis. Soil Biology and Biochemistry, (101), 251–258. https://doi.org/10.1016/j.soilbio.2016.07.021

Johnston, K. (2018). The Production, characterization, and upgrading of charcoals into activated carbon. The University of Maine, Orono, Maine

Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., … Soja, G. (2012). Characterization of slow pyrolysis charcoals: Effects of feedstocks and pyrolysis temperature on charcoal properties. Journal of Environmental Quality, 41, 990–1000. https://doi.org/10.2134/jeq2011.0070

Lehmann, J., & Joseph, S. (2009). Charcoal for environmental management: science and technology. Science And Technology. Retrieved from http://books.google.com/books?hl=en&lr=&id=w-CUty_JIfcC&oi=fnd&pg=PR11&dq=Charcoal+for+environmental+management:+science+and+technology&ots=cllXBZWZBa&sig=nGtpUY7VXBOi-m4f6uKPulBlaLg%5Cnhttp://books.google.com/books?hl=en&lr

Maf’tuah, E., Simatupang, R. S., Subagio, H., & Nursyamsi, D. (2016). Effectiveness of some ameliorants to reduce CO2 and N2O emission at corn planting in peat land. Journal of Wetkands Environmental Management, 4(1), 55–64.

Mohajan, H. K. (2012). Dangerous effects of methane gas in atmosphere. International Journal of Economic and Pollitical Integration, 2(1), 3–10.

Omri, A., & Benzina, M. (2012). Characterization of Activated Carbon Prepared from a New Raw Lignocellulosic Material: Ziziphus Spina-Christi Seeds. Journal de La Societe Chimique de Tunisie, 14, 175–183.

Oramahi, H. A. (2016). Optimasi dengan RSM dan rancangan percobaan. Yogyakarta: Gava Media.

Parthasarathi, T., Vanitha, K., Mohandass, S., & Vered, E. (2019). Mitigation of methane gas emission in rice by drip irrigation. F1000Reserarch, 8(2023).

Pietikainen, J., Kiikkilla, O., & Fritze, H. (2000). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. OIKOS, 89(2), 231–242. https://doi.org/10.1034/j.1600-0706.2000.890203.x

Promdee, K., Vitidsant, T., Vanpetch, S., & Ruengvilairat, P. (2012). Physicochemical of bio-oil from three residual plants produced by continuous pyrolysis reactor. International Journal of Chemical Engineering and Applications, 3(2), 104–107.

Purwanta, W., Soemantojo, R. W., Widanarko, S., & Bismo, S. (2012). Uji eliminasi gas metana (CH4) dengan biofiltrasi pada unggun kompos dan tanah penutup landfill. Jurnal Teknologi Lingkungan, 1–10.

Purwanto, D. (2016). Sifat fisis dan mekanis papan partikel dari limbah campuran serutan rotan dan sebuk kayu. Jurnal Riset Industri, 10(3), 125–133.

Ramlow, M., & Cotrufo, M. F. (2017). Woody charcoal’s greenhouse gas mitigation potential across fertilized and unfertilized agricultural soils and soil moisture regimes. GBC Bioenergy, 10, 108122. https://doi.org/10.1111/gcbb.12474

Ronsse, F., Van Hecke, S., Dickinson, D., & Prins, W. (2013). Production and characterization of slow pyrolysis charcoal : Influence of feedstock type and pyrolysis conditions. Global Change Biology Bioenergy, 5, 104–115. https://doi.org/10.1111/gcbb.12018

Sadasivam, B. Y., & Reddy, K. R. (2015). Adsorption and transport of methane in charcoals derived from waste wood. Waste Management, 43, 218-229. https://doi.org/10.1016/j.wasman.2015.04.025

Saletnik, B., Zaguła, G., Bajcar, M., Tarapatskyy, M., Bobula, G., & Puchalski, C. (2019). Charcoal as a multifunctional component of the environment — A review. Applied Science, 9(1139), 1–20. https://doi.org/10.3390/app9061139

Setiawati, E., Prijono, S., Mardiana, D., & Soemarno. (2019). Pengaruh charcoal serbuk kayu durian terhadap karakteristik tanah sulfat masam dalam mengurangi emisi gas metana. Jurnal Tanah dan Sumberdaya Lahan, 6(2), 1251–1260. https://doi.org/10.21776/ub.jtsl.2019.006.2.6

Setyanto, P., & Susilawati, H. L. (2007). Mitigasi emisi gas metan pada tanah gambut dengan varietas padi. In Prosiding Seminar Pertanian Lahan Rawa “ Revitalisasi kawasan PLG dan lahan rawa lainnya untuk membangun lumbung pangan nasional” (pp. 293–300).

Spokas, K. A. (2013). Impact of charcoal field aging on laboratory greenhouse gas production potentials. GCB Bioenergy, 5, 165–176. https://doi.org/10.1111/gcbb.12005

Steinbeiss, S., Gleixner, G., & Antonietti, M. (2009). Effect of charcoal amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry, 41(6), 1301–1310. https://doi.org/10.1016/j.soilbio.2009.03.016

Stensson, M. (2018). Charcoal : a win-win-win solution for sustainable small-scale farming in Sweden, Lund University, Lund, Sweden

Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A. M., Dallmeyer, I., & Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on charcoal bulk and surface properties. Biomass and Bioenergy, 84, 37–48. https://doi.org/10.1016/j.biombioe.2015.11.010

Susilawati, & Rumanti, I. A. (2018). Potential and constraints of rice farming in tidal swamp land. In Proceedings of 162nd The IIER International Conference, Yokohama, Japan (pp. 46–50).

Tamai, N., Takenaka, C., & Ishizuka, S. (2007). Water-soluble Al inhibits methane oxidation at atmospheric concentration levels in Japanese forest soil. Soil & Tillage Research, 39, 1730–1736. https://doi.org/10.1016/j.soilbio.2007.01.029

Teoh, R., Caro, E., Holman, D. B., Joseph, S., Meale, S. J., & Chaves, A. V. (2019). Effects of hardwood charcoal on methane production, fermentation characteristics, and the rumen microbiota using rumen simulation. Frontiers in Microbiology, 10(July), 1–13. https://doi.org/10.3389/fmicb.2019.01534

Tian, H., Chen, G., Lu, C., Xu, X., Ren, W., Zhang, B., …Wofsy, S. (2012). Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosystem Health and Sustainability, 1(1).

Towprayoon, S., Smakgahn, K., & Poonkaew, S. (2005). Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere, 59, 1547–1556. https://doi.org/10.1016/j.chemosphere.2005.02.009 A

Tubiello, F. N. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Evirinmental Research Letters, 8, 015009. https://doi.org/10.1088/1748-9326/8/1/015009

Wang, C., Lai, D. Y. F., Sardans, J., Wang, W., Zeng, C., & Pe, J. (2017). Factors Related with CH4 and N2O emissions from a paddy field : clues for management implications. Plos, 12(1), e0169254. https://doi.org/10.1371/journal.pone.0169254

Wang, C., Wang, Y., Herath, H. M. S. K. (2017). Polycyclic aromatic hydrocarbons (PAHs) in charcoal – their formation, occurrence and analysis: A review. Organic Geochemistry, 114, 1-11

Woolley, S., & Hallowell, B. (2018). Charcoal : An Overview. Retrieved from https://biomasscontrols.com/wp-content/uploads/2019/01/CharcoalOverview_2.18_v2.pdf

Wu, Z., Song, Y., Shen, H., Jiang, X., Li, B., & Xiong, Z. (2019). Charcoal can mitigate methane emissions by improving methanotrophs for prolonged period in fertilized paddy soils. Environmental Pollution, 253, 1038–1046. https://doi.org/10.1016/j.envpol.2019.07.073

Wu, B., Xi, B., He, X., Sun, X., Li, Q., O., Q., Zhang, H., & Xue, C. (2020). Methane emission reduction enhanced by hydrophobic charcoal-modified soil cover. Processes, 8, 162

Xiao, Y., Yang, S., Xu, J., Ding, J., Sun, X., & Jiang, Z. (2018). Effect of charcoal amendment on methane emissions from paddy field under water-saving irrigation. Sustainability, 10, 1371. https://doi.org/10.3390/su10051371

Zhao, S. H., Ta, N., & Wang, X. D. (2017). Effect of temperature on the structural and physicochemical properties of charcoal with apple tree branches as feedstock material. Energies, 10(9), 1–15. https://doi.org/10.3390/en10091293

Zhao, Z., Yue, Y., Sha, Z., Li, C., Deng, J., Zhang, H., …Cao, L. (2015). Assessing impacts of alternative fertilizer management practices on both nitrogen loading and greenhouse gas emissions in rice cultivation. Atmospheric Environment, 119, 393–401. https://doi.org/10.1016/j.atmosenv.2015.08.060




DOI: http://dx.doi.org/10.24111/jrihh.v12i1.6110

Refbacks

  • There are currently no refbacks.




JRIHH INDEXED BY :

       
       


Published by BARISTAND INDUSTRI BANJARBARU (E-ISSN: 2503-0779 dan P-ISSN : 2086-1400).

 Creative Commons License