Pretreatment Lignoselulosa dari Jerami Padi dengan Deep Eutectic Solvent untuk Meningkatkan Produksi Bioetanol Generasi Dua (Lignocellulose Pretreatment of Rice Straw using Deep Eutectic Solvent to Increase Second-Generation Bioethanol Production)

Nurwahdah Nurwahdah, Al-Arofatus Naini, Asma Nadia, Ratri Yuli Lestari, Sunardi Sunardi, Ph.D.


Current issues of energy sector in Indonesia can be summarized as depletion of fossil energy reserves which is dominated by fuel oil and coal. Oil production continues to decline and the increase in oil fuels demand lead to increase imports of crude oil and oil fuels. To use lignocellulosic biomass waste has become a major alternative to replace fossil fuels and chemical feedstocks production. In 2015, total rice production in South Kalimantan reached 2,140,276 ton and rice straws were abundant waste which could be utilized as raw material for bioethanol production. Pretreatment process of lignocellulose is a crucial step to remove lignin because of the complex chemical cross-linking between chemical components. Delignification of lignin can increase the accessibility and digestibility of enzymatic, and help to promote enzymatic hydrolysis. Nowadays, pretreatment process with green chemistry method is continuesly developed by researcher to reduce the production costs and thus avoid adverse effects on human and the environment. This article disscussed about green methods for pretreatment of lignocellulosic material using deep eutectic solvent (DES) to increase second-generation bioethanol production in South Kalimantan.


Pretreatment; lignocellulose; deep eutectic solvent; bioethanol

Full Text:



Aiman, S. (2014). Perkembangan Teknologi dan Tantangan dalam Riset Bioetanol di Indonesia. JKTI, 16 (2), 108-117.

Anwar, Z., M. Gulfraz, & M. Irshad. (2014). Agro-industrial Lignocellulosic Biomass A Key To Unlock The Future Bio-Energy: A Brief Review. Journal of Radiation Research and Applied, 1-11.

Ashraf, M.T. & Schmidt, J. E. (2017). Process Simulation and Economic Assessment of Hydrothermal Pretreatment and Enzymatic Hydrolysis of Multi-feedstock Lignocellulose-Separate vs Combining Processing. Bioresource Technology, 249, 835-843.

Balat, M., Balat, H. & Oz, C. (2008). Progress in Bioethanol Processing. Progress in Energy and Combustion Science, 34, 551–573.

Boedoyo, M. S. (2008). Pengembangan Teknologi Energi Alternatif untuk Mendukung Ketahanan dan Kemandirian Energi Nasional. Jakarta: BPPT.

BPS. (2017). Neraca Energi Indonesia 2012-2016. Jakarta: Badan Pusat Statistik-Statistics Indonesia.

Chandel, A. K. & Singh, O. V. (2011). Weedy Lignocellulosic Feedstock and Microbial Metabolic Engineering, Advancing The Generation of ‘Biofuel’. Applied Microbial Biotechnology, 89, 1289-1303.

Chauve, M., Barre, L., Tapin-Lingua, S. Perez, Dd. S., Decottignies, D., Perez, S. & Ferreira, N. L. (2013). Evolution and Impact of Cellulose Architecture During Enzymatic Hydrolysis by Fungal Cellulases. Advances in Bioscience and Biotechnology, 04, 1095-1109.

Chung, B. Y., Lee, J. T., Bai, H. W. Kim, U. J., Bae, H. J., Wi, S. G., & Cho, J. Y. (2012). Enhanced Enzymatic Hydrolysis of Poplar Bark by Combined Use of Gamma Ray and Dilute Acid for Bioethanol Production. Radiation Physics and Chemistry, 81, 1003–1007.

Daud, M., Safii, & Syamsu, K. (2012). Biokonversi Bahan Berlignoselulosa menjadi Bioetanol Menggunakan Aspergillus Niger dan Saccharomyces cereviciae. Jurnal Perennial, 8 (2), 43-51.

Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Łukasik, R. (2010). Hemicelluloses for Fuel Ethanol, A Review. Bioresource Technology, 101, 4775– 4800.

Hall. M., Bansal, P., Lee, J.H., Realff, M.J. & Bommarius, A.S. (2010). Cellulose Crystallinity A Key Predictor of The Enzymatic Hydrolysis Rate. FEBS Journal, 277, 1571-1582.

Hou, J., Ding, C., Qiu, Z., Zhang, Q., & Xianga, W. (2017). Inhibition Efficiency Evaluation of Lignocellulose-derived Compounds for Bioethanol Production. Journal of Cleaner Production, 165, 1107-1114.

Isikgor, F.H, & Becer. C.R. (2015). Lignocellulosic Biomass: A Sustainable Platform for Production of Bio-Based Chemicals and Polymers. Polymer Chemistry, 1-61.

Kamireddy, S. R., Li. J., Tucker. M., Degenstein. J, & Ji. Y. (2013). Effects and Mechanism of Metal Chloride Salts on Pretreatment and Enzymatic Digestibility of Corn Stover. Industrial & Engineering Chemistry Research, 52,1775-1782.

Kim, K. H., Dutta, T., Ralph, J., Mansfield, S. D., Simmons, B. A., & Singh, S. (2017). Impact of Lignin Polymer Backbone Esters on Ionic Liquid Pretreatment of Poplar. Biotechnology Biofuels, 101(10), 1-10.

Kim, K. H., Dutta, T., Sun, J., Simmons, B., & Singh, S. (2018). Biomass Pretreatment Using Deep Eutectic Solvent from Lignin Derived Phenols. Green Chemistry, 20(4), 809-815.

Kristiani. A., Sembiring, K. C., Abimanyu, H., & Aulia, F. (2013). Hidrolisis Lignoselulosa Pelepah dan Tandan Kosong Kelapa Sawit dengan Katalis Zirkonia Tersulfatasi. JKTI, 15 (2), 74-77.

Kuhad R.C., Gupta, R., Khasa, Y.P., & Singh, A. (2010). Bioethanol Production from Lantana Camara (Red sage), Pretreatment, Saccharification and Fermentation. Bioresource Technology, 101, 8348–8354.

Kumar, P., Barrett, D. M., Delwiche, M. J. & Stroeve, P. (2009a). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial and Engineering Chemistry Research, 48, 3713–3729.

Kumar. A., Sing, L.K., & Ghosh, S. (2009b). Bioconversion of Lignocellulosic Fraction of Water-hyacinth (Eichhornia crassipes) Hemicelluloses Acid Hydrolysate to Ethanol by Pichia Stipitis. Bioresource Technology, 100, 3293-3297.

Li. B. Z, Balan, V., Yuan, Y. J. & Dale, B. E. (2010). Process Optimization to Convert Forage and Sweet Sorghum Bagasse to Ethanol Based on Ammonia Fiber Expansion (AFEX) Pre-treatment. Bioresource Technology, 101, 1285–1292.

Li, S. & Song, X. (2018). Study on The Preparation and Production Factors of A Direct Lignocellulose Biomass Fuel Cell. Journal of Electroanalytical Chemistry, 810, 55-61.

Limayem, A., & Ricke, S. C. (2012). Lignocellulosic Biomass for Bioetanol Production: Current Perspectives, Potential Issues and Future Prospects. Progress in Energy and Combustion Science, 38, 449-467.

Liong, Y. Halis, Y., R., & Mohamed, R. (2013). Chemical Characterization of Imperata cylindrica (‘Lalang’) and Pennisetum purpureum (Napier grass) for Bioethanol Production in Malaysia. Pertanika Journal of Tropical Agricultural Science, 36, 109 – 116.

Mais, U., Esteghlalian, A. R., Saddler, J. N. & Mansfield, S. D. (2002). Enhancing The Enzymatic Hydrolysis of Cellulosic Materials Using Simultaneous Ball Milling. Applied Biochemistry and Biotechnology, 98(1), 815-832.

Mazaheri, H., Lee, K. T., Bhatia, S., & Mohamed, A. R. (2010). Sub/supercritical Liquefaction of Oil Palm Fruit Press fiber for The Production of Bio-oil, Effect of Solvents. Bioresource Technology, 101(19), 7641–7647.

Menon, V. & Rao, M. (2012). Trends in Bioconversion of Lignocellulose, Biofuels, Platform Chemicals & Biorefinery Concept. Progress in Energy and Combustion Science, 8(4), 522–550.

Mohr, A. & Raman, S. (2013). Lessons from First Generation Biofuels and Implications for The Sustainability Appraisal of Second Generation Biofuels. Energy Policy, 63, 114-122.

Moodley, P. & Kana, E. B. G. (2017). Development of A Steam or Microwave-assisted Sequential Salt-alkali Pretreatment for Lignocellulosic Waste, Effect on Delignification and Enzymatic Hydrolysis. Energy Conversion and Management, 148, 801-808.

Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., & Ladisch, M. R,. (2005). Optimization of pH Controlled Liquid Hot Water Pretreatment of Corn Stover. Bioresource Technology, 96(18), 1986-1993.

Nappu, B. M. (2013). Sebaran Potensi Limbah Tanaman Padi dan Jagung serta Pemanfaatannya di Sulawesi Selatan. Seminar Nasional Inovasi Teknologi Pertanian. Balai Pengkajian Teknologi Pertanian Sulawesi Selatan.

Nata, I. F., Prayogo, J. H., & Arianto, T. (2014). Produksi Bioetanol dari Alkali-Pretreatment Jerami Padi dengan Proses Simultaneous Sacharification and Fermentation (SSF). Konversi, 3(1), 10-16.

Osvaldo, Z.S., Putra, S. P., & Faizal, M. (2012). Pengaruh Konsentrasi Asam dan Waktu pada Proses Hidrolisis dan Fermentasi Pembuatan Bioetanol dari Alang-Alang. Jurnal Teknik Kimia, 18(2), 52-62.

Pan, M., Zhao, G., Ding, C., Wu, B., Lian, Z., & Lian, H. (2017). Physicochemical Transformation of Rice Straw after Pretreatment with A Deep Eutectic Solvent of Choline Chloride/Urea. Carbohydrate Polymers, 176, 307-314.

Pan, X., Kadla, J.F., Ehara, K., Gilkes, N., & Saddler, J.N. (2006). Organosolv Ethanol Lignin from Hybrid Poplar as A Radical Scavenger: Relationship Between Lignin Structure, Extraction Conditions, and Antioxidant Activity. Journal of Agriculture and Food Chemistry, 54(16), 5806-5813.

Pang, Z., Lyu, W., Dong, C., Li, H., & Yang, G. (2016). High Selective Delignification Using Oxidative Ionic Liquid Pretreatment at Mild Conditions for Efficient Enzymatic Hydrolysis of Lignocellulose. Bioresource Technology, 214, 96-101.

Phitsuwan, P., Sakka, K., & Ratanakhanokchai, K. (2013). Improvement of Lignocellulosic Biomass in Planta, A Review of Feedstocks, Biomass Recalcitrance, and Strategic Manipulation of Ideal Plants Designed for Ethanol Production and Processability. Biomass and Bioenergy, 58, 390-405.

Procentese, A., Johnson, E., Orr, V., Campanile, A. G., Wood, J. A., & Rehmann, L. (2015). Deep Eutectic Solvent Pretreatment and Subsequent Saccharification of Corncob. Bioresource Technology, 192, 31-36.

Procentese, A., Raganati, F., Olivien, G., Russo, M. E., Rehmann, L., & Marzocchella, A. (2017). Low-energy Biomass Pretreatment with Deep Eutectic Solvents for Bio-butanol Production. Bioresource Technology, 243, 464-473.

Reddy, N. & Yang, Y. (2005). Biofibers from Agricultural Byproducts for Industrial Applications. Trend Biotechnology, 23(1), 22–27.

Sert, M., Aslanoglu, A., & Ballice, L. (2017). Conversion of Sunflower Stalk Based Cellulose to The Valuable Products Using Choline Chloride Based Deep Eutectic Solvent. Renewable Energy, 118(C), 993-1000.

Socha, A. M., Parthasarathi. R., Shi. J., Pattathil. S., Whyte. D., Bergeron. M., George. A., Tran. K., Stavila. K., Venkatachalam. S., Hahn. M. G., Simmons. B. A, & Singh. S. (2014). Efficient Biomass Pretreatment Using Ionic Liquids Derived from Lignin and Hemicellulose. PNAS. 111, E3587-E3595.

Sunardi & Istikowati, W. T. (2012). Analisis Kandungan Kimia dan Sifat Serat Tanaman Purun Tikus (Eleocharis dulcis) Asal Kalimantan Selatan. Bioscientiae, 9(2), 15-25.

Tamunaidu, P. & Saka, S. (2011). Chemical Characterization of Various Parts of Nipa Palm (Nypa fruticans). Industrial Crops and Products, 34, 1423-1428.

Wahlström, R. M. & Suurnäkki, A. (2015). Enzymatic Hydrolysis of Hignocellulosic Polysaccharides in The Presence of Ionic Liquids. Green Chemistry, 17, 694-714.

Walker, G. M. (2010). Bioethanol, Science and Technology of Fuel Alcohol. Scotland: University of Abertay.

Wang, L., Yang., M., Fan, X., Zhu, X., Xu, T. & Yuan, Q. (2011). An Environmentally Friendly and Efficient High-temperature-steaming Method for Xylitol Bioconversion with Corncob Hydrolysate by Adapted Candida tropicalis. Process Biocemistry, 46, 1619-1626.

Wu, W., Wang, Z., Jin, Y., Matsumoto, Y., & Zhai, H. (2014). Effects of LiCl/DMSO Dissolution and Enzymatic Hydrolysis on The Chemical Composition and Lignin Structure of Rice Straw. Biomass and Bioenergy, 71, 357-362.

Xu, G., Ding, J., Han, R., Dong, J., & Ni, Y. (2016). Enhancing Cellulose Accessibility of Corn Stover by Deep Eutectic Solvent Pretreatment for Butanol Fermentation. Bioresource Technology, 203, 364–369.

Yoon, L. W., Ngoh, G. C., Chua, M., Seak, A., & Hashim, M. (2011). Comparison of Ionic Liquid, Acid and Alkali Pretreatments for Sugarcane Bagasse Enzymatic Saccharification. Journal of Chemical Technology and Biotechnology, 86(10), 1342-1348.

Yunus, R., Salleh, S. F., Abdullah, N., & Biak, D. R. A. (2010). Effect of Ultrasonic Pretreatment on Low Temperature Acid Hydrolysis of Oil Palm Empty Fruit Bunch. Bioresource Technology, 101(24), 9792-9796.

Zhang, C., Xia, S., & Ma, P. (2016). Facile Pretreatment of Lignocellulosic Biomass Using Deep Eutectic Solvents. Bioresource Technology, 219, 1-5.

Zhao, Y., Wang, Y., Zhu, J. Y., Ragauskas, A., & Deng, Y. (2008). Enhanced Enzymatic Hydrolysis of Spruce by Alkaline Pretreatment at Low Temperature. Biotechnology Bioengineering, 99,1320-1328.



  • There are currently no refbacks.



Published by BARISTAND INDUSTRI BANJARBARU (E-ISSN: 2503-0779 dan P-ISSN : 2086-1400).

 Creative Commons License