Praperlakuan secara Hidrotermal Limbah Lignoselulosa untuk Produksi Bioetanol Generasi Kedua (Pretreatment of Lignocellulose Wastes Using Hydrothermal Method for Producing Second Generation Bioethanol)

Al-Arofatus Naini, Nurwahdah Nurwahdah, Ratri Yuli Lestari, Sunardi Sunardi, Ph.D.

Abstract


The second generation of bioethanol derived from various cellulosic biomass materials is one of the latest renewable energy as the alternative of fossil fuel. The cellulosic waste based wood and non-wood materials are the most abundant natural resource on the earth, renewable, and inexpensive. Currently, second generation bioethanol development is still not optimally done due to various obstacles, especially the pretreatment process to eliminate lignin, influencing the conversion process of cellulose into reducing sugar. Hydrothermal method is one of lignocellulose pretreatments, which is widely developed because this method is relatively cheap and environmentally friendly with the utilization of water-based solvent. Hydrothermal methods performed at high temperature and pressure in a relatively short time are able to deconstruct the lignocellulose structure that enables cellulase enzymes to access cellulose for hydrolysis. This study discussed about the development of hydrothermal method for lignocellulose pretreatment process to increase production of second-generation bioethanol. Some aspects studied in this research were structural change, chemical composition, lignocellulosic crystallinity before and after hydrothermal processes, and hydrothermal effect on the production of reducing sugars. Hydrothermal method could be used and developed as an efficient and cheap method as the first treatment of lignocellulose waste in attempt to increase the production of bioethanol.


Keywords


hydrothermal; pretreatment; lignocellulose

Full Text:

PDF

References


Ando, H. Sakaki, T., Kokusho. T., Shibata. M., Uemura. Y., & Hatate. Y. (2000). Decomposition Behavior of Plant Biomass in Hot-Compressed Water. Industrial and Engineering Chemistry Research, 39(10), 3688-3693.

Aoyoma, M., Seki, K. & Saito, N. (1995). Solubilization of Bamboo Grass Xylan by Steaming Treatment. Holzforschung, 49, 193-196.

Bobleter, O. (1994). Hydrothermal Degradation of Polymers Derived from Plants. Progress in Polymer Science, 19(5), 797-841.

Carrasco, J.E., SaÂiz, M.C., Navarro. A., Soriano, P., SaÂez, F., & MartõÂnez, J. M. (1994). Effects of Dilute Acid and Steam Pretreatments on The Cellulose Structure and Kinetics of Cellulosic Fraction Hydrolysis by Dilute Acids in Lignocellulosic Materials. Applied Biochemical and Biotechnology, 45-46(1), 23-34.

Carvahlo, D, M, D. Jose, H, D, Q., & Jorge, L, C. (2017). Hydrothermal and Acid Pretreatment Improve Ethanol Production from Lignocellulosic Biomasses. BioResource, 12(2), 3088-3017.

Costa, A. G., Pinheiro, G. C., Pinheiro, F. G. C., Dos Santos, A. B., Santaella, S. T., &Leitão, R. C. (2014). The Use of Thermochemical Pretreatments to Improve The Anaerobic Biodegradability and Biochemical Methane Potential of The Sugarcane Bagasse. Chemical Engineering Journal, 248, 363-372.

Garrote, G., DomõÂnguez, H., & Parajo, J. C. (1999). Hydrothermal Processing Of Lignocellulosic Materials. Holz. Roh. Werkst. 57, 191-202.

Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., & Bogel-Lukasik, R. (2010). Hemicelluloses for Fuel Ethanol: A Review. Bioresource Technology, 101(13), 4775-4800.

Hage, R. E., Chrusciel, L., & Desharnais, L. (2010). Effect of Autohydrolysis of Miscanthus Giganteus on Lignin Structure and Organosolv Delignification. Bioresource Technology, 101, 9321-9329.

Hu, F., Jung, S., & Ragauskas, A. (2012). Pseudo-Lignin Formation and Its Impact on Enzymatic Hydrolysis. Bioresources Technology, 117, 7-12.

Ibbett, R., Gaddipati, S., Hill, S., & Tucker, G. (2013). Structural Reorganisation of Cellulose Fibrils in Hydrothermally Deconstructed Lignocellulosic Biomass and Relationships with Enzyme Digestibility. Biotechnology Biofuel, 6, 1-33.

Jin, S. G., Zhang, G. M., Zhang, P. Y., Li, F., Fan, S. Y. & Li, J. (2016). Thermochemical Pretreatment and Enzymatic Hydrolysis for Enhancing Saccharification of Catalpa Sawdust. Bioresource Technology, 205, 34-39.

Lei, H. W., Cybulska, I. & Julson, H. (2013). Hydrothermal Pretreatment of Lignocellulosic Biomass and Kinetics. Journal of Sustainable Bioenergy Systems, 3, 250-259.

Marshall, W. L. (1981). Ion Product of Water Substance, 0-1000°C, 1-10,000 Bars New International Formulation and Its Background. Journal Physical and Chemical Reference Data, 10(2), 295-304.

Moiser, N., Charles, W., Bruce, D., Richard, E., Lee, Y. Y., Mark, H., & Michael, L. (2005). Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass. Bioresource Technology, 96, 673-686.

Mood, S.H., Golfeshan, A.H., Tabatabaei, M., Jouzani, G.S., Najafi, G.H., Gholami, M. & Ardjmand, M. (2013). Lignocellulosic Biomass to Bioethanol, A Comprehensive Review With A Focus on Pretreatment. Renewable and Sustainable Energy Reviews, 27, 77-93.

Ninomiya, K., Ohta, A., Omote, S., Ogino, C., Takahashi, K., & Shimizu, N. (2013). Combined Use of Completely Bio-Derived Cholinium Ionic Liquids and Ultrasound Irradiation for The Pretreatment of Lignocellulosic Material to Enzymatic Saccharification. Chemical Engineering Journal, 215-216, 811-818.

Nitsos, C. K., Matis, K. A., & Triantafyllidis, K. S. (2013). Optimization of Hydrothermal Pretreatment og Lignocellulosic Biomass in the Bioethanol Production Process. ChemSusChem, 6(1), 110-122.

O'Sullivan, A. C. (1997). Cellulose: The Structure Slowly Unravels. Cellulose, 4, 173-207.

Oh, S. Y., Yoo, D. J., Shin, Y., & Seo, G. (2005). FTIR Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide. Carbohydrate Research, 340, 417-428.

Petchpradap, P., Yoshida, T., Charinpanitkul, T., & Matsumura, Y. (2009). Hydrothermal Pretreatment of Rubber Wood for the Saccarification Process. Industrial and Engineering Chemistry Research, 48(9), 4587-4591.

Reza, M. T. (2013). Upgrading Biomass by Hydrothermal and Chemical Conditioning (Thesis).Reno: University of Nevada.

Ruiz, E., Cara, C., Manzanares, P., Ballesteros, M., & Castro, E. (2008). Evaluation of Steam Explosion Pre-Treatment for Enzymatic Hydrolysis of Sunflower Stalks. Enzyme and Microbial Technology, 42(2), 160-166.

Sarwono, R., Arief, H., Rizka, P., Hendris, H, K., & Fatah, S. (2016). Konversi Limbah Tandan Kosong Kelapa Sawit Menjadi Glukosa dengan Proses Hidrotermal Tanpa Melalui Proses Pretreatment. Biopropal Industri. 7(2), 63-71.

Sasaka, M., & Ozer, E. (1995). Aqueous Extraction of Sugarcane Bagasse Hemicellulose and Production of Xylose Syrup. Biotechnology anad Bioengineering, 45, 517-523.

Shuai, L., Yang, Q., Zhu, J. Y., Lu, F. C., Weimer, P. J., Ralph, J., & Pan, X. J. (2010). Comparative Study of SPORL and Dilute-Acid Pretreatments of Spruce for Cellulosic Ethanol Production. Bioresources Technology, 101, 3106-3114.

Smeets, E. M. W., Faaij, A. P. C., Lewandowski, I. M., & Turkenburg, W. C. (2007). A Bottom-Up Assessment and Review of Global Bio-Energy Potensials to 2050. Progress in Energy and Combustion Science, 33, 56-106.

Sun, T. S., Wang, K., Yang, G. H., Yang, H.Y., & Xu, F. (2014a). Hydrothermal Treatment and Enzymatic Saccharification of Corncobs. Bioresources, 9(2), 3000-3013.

Sun, S. N., Cao, X. F., Li, H.Y., Xu, F., & Sun, R. C. (2014b). Structural Characterization of Residual Hemicelluloses from Hydrothermal Pretreated Eucalyptus Fiber. International Journal of Biological Macromolecules, 69, 158-164.

Tortosa, J. F., Rubio, M., & Demetrio, G. (1995) Autohidroâlisis De Tallo De Maõâz En Suspensioân Acuosa. Anidad. 52: 181-188.

Tune, M. S., & Heiningen, A. R. P. (2011). Characterization and Molecular Weight Distribution of Carbohydrates Isolated from The Autohydrolysis Extract of Mixed Southern Hardwoods. Carbohydrate Polymer, 83, 8-13.

Wahyudiono, W., Machmudah, S., & Goto, M. (2013). Utilization of Sub and Supercritical Water Reactions in Resource Recovery of Biomass Wastes. Engineering Journal, 17(1), 1-12.

Wu, M., Zhao, D. H., Phang, J. H., Zhang, X. M., Li, M. F., Xu, F., & Sun, R. C. (2015). Separation and Characterization of Lignin Obtained by Catalytic Hydrothermal Pretreatment of cotton Stalk. Industrial Crops and Products, 66, 123-130.

Xiao, X., Bian, J., Li, M.F., Xu, H., Xiao, B., & Sun, R. C. (2014). Enhanced Enzymatic Hydrolysis of Bamboo (Dendrocalamus giganteus Munro) Culm by Hydrothermal Pretreatment. Bioresource Technology, 159, 41-47.

Zhao, J., Quan, C. S., & Fan, S. D. (2013). Role of Lignin in Bio-Ethanol Production from Lignocellulosic Biomass. Journal of Biobased Materials and Bioenergy, 7(5), 533-540.




DOI: http://dx.doi.org/10.24111/jrihh.v10i2.4078

Refbacks

  • There are currently no refbacks.




JRIHH INDEXED BY :

     
      


Published by BARISTAND INDUSTRI BANJARBARU (E-ISSN: 2503-0779 dan P-ISSN : 2086-1400).

 Creative Commons License