Effects of Biomass Moisture Content and Process Temperature on Biopellet Quality Derived from Rubber Seed Shell and Ater Bamboo (Gigantochloa atter)

I Dewa Gede Putra Prabawa

Abstract


The purposes of this research were to study the ieffects of biomass moisture content and process temperature on the quality of biopellet derived from rubber seed shell and bamboo ater (Gigantochloa atter). The biomass was conditioned at different moisture contents (6, 12, 14, 16, 18, and 20% w/w), and the biopelet was produced at a pressure of 597,24 kg/cm2 with various process temperatures (100, 125, 150, 175, and 200oC). The results showed that the properties of produced biopellets were significantly affected by the variation of moisture content and process temperature. High moisture content of biomass could increase the moisture content of biopellet while the calorific value and ash content decreased. With the increase in process temperatures, calorific value and ash increased whereas the moisture content of biopellet decreased. Mechanical durability was enhanced with the increase inthe moisture content of biomass, starting from 6% to 18%;and was improved with the increase in the process temperatures, starting from 100oC to 175oC. However, the bulk density of biopellet increased with the increase inthe moisture content of biomass, starting from 6% to 16%, and was improved with the increase in the process temperatures from 100oC to 150oC. The best quality of biopellet was produced  in the biomass moisture content of 16% and the process temperature of 150oC. That biopellet had mechanical durability of 99.16%, calorific value of 4,402 cal/g, bulk density of 1,157 kg/m3, moisture content of 6.71%, ash of 1.19%, nitrogen of 0.15%, Sulphur of 0.013%, and chlorine of <0.1 ppm. That biopellet quality met European standards (EN 14961-2).


Keywords


biopellet; rubber seed shell; Gigantochloa atter; moisture content; temperature

Full Text:

PDF

References


Bantacut, T., Hendra, D., & Nuwigha, R. (2013). The Quality of Biopellet from Combination of Palm Shell Charcoal and Palm Fiber. Jurnal Teknologi Industri Pertanian, 23(1), 1–12.

Carone, M. T., Pantaleo, A., & Pellerano, A. (2011). Influence of Process Parameters and Biomass Characteristics on The Durability of Pellets from The Pruning Residues of Olea europaea L. Journal Biomass and Bioenergy, 35(1), 402–410. https://doi.org/10.1016/j.biombioe.2010.08.052

Gilang, R., Affandi, D. R., & Ishartani, D. (2013). Karakteristik Fisik dan Kimia Tepung Koro Pedang (Canavalia ensiformis) dengan Variasi Perlakuan Pendahuluan. Jurnal Teknosains Pangan, 2(3), 34–42.

Kaliyan, N., & Morey, R. (2009). Factors Affecting Strength and Durability of Densified Biomass Products : A Review. Journal Biomass and Bioenergy, 33(3), 337–359.

Kaliyan, N., & Morey, R. V. (2009). Factors Affecting Strength and Durability of Densified Biomass Products. Journal Biomass and Bioenergy, 33(3), 337–359. https://doi.org/10.1016/j.biombioe.2008.08.005

Lamanda, D. D., Setyawati, D., Nurhaida, Diba, F., & Roslinda, E. (2015). Karakteristik Biopelet Berdasarkan Komposisi Serbuk Batang Kelapa Sawit dan Arang Kayu Laban dengan Jenis Perekat sebagai Bahan Bakar Alternatif Terbarukan. Jurnal Hutan Lestari, 3(2), 313–321.

Larsson, S., & Rudolfsson, M. (2012). Temperature Control in Energy Grass Pellet Production – Effects on Process Stability and Pellet Quality. Journal Applied Energy, 97, 24–29.

Liu, Z., Fei, B., Jiang, Z., Cai, Z., & Liu, X. (2014). Important Properties of Bamboo Pellets to Be Used as Commercial Solid Fuel in China. Wood Science and Technology, 48(5), 903–917. https://doi.org/10.1007/s00226-014-0648-x

Llorente, M. J., & Garcia, J. E. . (2008). Suitability of Thermo-Chemical Corrections for Determining Gross Calorific Value in Biomass. Journal Thermochimica Acta, 468(1–2), 101–107.

Mahapatra, A. K., Harris, D. L., Durham, D. L., Lucas, S., Terrill, T. H., Kouakou, B., & Kannan, G. (2010). Effects of Moisture Change on The Physical and Thermal Properties of Sericea lespedeza Pellets. International Agricultural Engineering Journal, 19(3), 23–29.

Mani, S., Tabil, L. G., & Sokhansanj, S. (2006). Effects of Compressive Force, Particle Size and Moisture Content on Mechanical Properties of Biomass Pellets from Grasses. Biomass and Bioenergy, 30(7), 648–654. https://doi.org/10.1016/j.biombioe.2005.01.004

Nasir, A. (2015). Karakteristik Wood Pellet Campuran Cangkang Sawit dan Kayu Bakau ( Rhizhophora spp.) (Skripsi). Institut Pertanian Bogor, Bogor, Indonesia.

Oveisi-Fordiie, E. (2011). Durability of Wood Pellets (Thesis). Faculty of Graduate Study Chemical and Biological Engineering, University Of British Columbia, Vancouver, British Columbia, Canada.

Prabawa, I., & Miyono. (2017). Mutu Biopelet dari Campuran Cangkang Buah Karet dan Bambu Ater (Gigantochloa atter). Jurnal Riset Industri Hasil Hutan, 9(2), 99–110.

Rhen, C., Rolf, G., Sjostrom, M., & Wasterlund, I. (2005). Effects Of Raw Material Moisture Content, Densification Pressure and Temperature on Some Properties of Norway Spruce Pellets. Journal Fuel Process Technology, 87(1), 11–16.

Sa’adah, W. A. (2014). Pemanfaatan Limbah Kelapa Sawit (Elaeis Guineensis Jacq.) dan Serbuk Kayu Mahoni sebagai Bahan Baku Biopelet (Skripsi). Institut Pertanian Bogor, Bogor, Indonesia

Van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A., & Ptasinski, K. J. (2011). Biomass Upgrading by Torrefaction for The Production of Biofuels: A Review. Biomass and Bioenergy, 35(9), 3748–3762. https://doi.org/10.1016/j.biombioe.2011.06.023

Winata, A. (2013). Karakteristik Biopelet dari Campuran Serbuk Kayu Sengon dengan Arang Sekam Padi sebagai Bahan Bakar Alternatif Terbarukan (Skripsi). Institut Pertanian Bogor, Bogor, Indonesia.




DOI: http://dx.doi.org/10.24111/jrihh.v10i2.3975

Refbacks

  • There are currently no refbacks.




JRIHH INDEXED BY :

     
      


Published by BARISTAND INDUSTRI BANJARBARU (E-ISSN: 2503-0779 dan P-ISSN : 2086-1400).

 Creative Commons License