Utilization of mensiang (Actinoscorpus grosus L.) as a cellulose-rich material for furfural synthesis

Fransiska Angelina G Rezekinta, Anwar Kasim, Novizar Nazir, F Failisnur

Abstract


The cellulose content of mensiang varies from 22% in the flower to 33% in the root. This could be used as a starting point for furfural synthesis. To separate furfural, several conditions are set for the distillation and evaporation processes. The conditions were rootstock part (A), upper stem part (B), whole stem part (C), whole stem with flowers part (D), and whole stem, flowers, and root part (E). Furfural content in the mensiang plant was conducted using Gas Chromatography-Mass Spectroscopy (GCMS) for the highest yield 11.78%, D treatment. Furfural synthesized from the mensiang plant has a furfural content of 96%. Furfural's density was 1.160 g/ml, boiling point was 161 oC, refractive index was 1.5120 obrix, and its viscosity was 1.46 cp.

Keywords


cellulose; furfural; mensiang

Full Text:

PDF

References


Andaka, G. (2011). Hidrolisis ampas tebu menjadi furfural dengan katalisator asam sulfat. Jurnal Teknologi, 4(2), 180–188.

Asrofi, M., Abral, H., Kasim, A., Pratoto, A., Mahardika, M., & Hafizulhaq, F. (2018). Mechanical properties of a water hyacinth nanofiber cellulose reinforced thermoplastic starch bionanocomposite: Effect of ultrasonic vibration during processing. Fibers, 6(2), 1–9. https://doi.org/10.3390/fib6020040

Bidin, N., Zakaria, M. H., Bujang, J. S., Aznadia, N., & Aziz, A. (2015). Suitability of aquatic plant fibers for handmade papermaking. 2015.

Brink, M., & Escobin, R. . (2016). Plant resource of south East Asia-fiber plants (Issue 17, p. 453). Backhuys Publisher: Leiden.

Butt, M. A., Zafar, M., Ahmad, M., Sultana, S., Ullah, F., Jan, G., Irfan, A., & Naqvi, S. A. Z. (2018). Morpho-palynological study of Cyperaceae from wetlands of Azad Jammu and Kashmir using SEM and LM. Microscopy Research and Technique, 81(5), 458–468. https://doi.org/10.1002/jemt. 22999

Coniwanti, P., H, G. S., & Handayani, E. (2016). Pembuatan furfural dari campuran biomassa ampas tebu ( Saccharum officinarum. 22(2), 37–45.

Farmakope Indonesia Edisi V. (2014). Kementrian Kesehatan RI.

Firdaus. (2011). Laporan hibah penulisan buku ajar. teknik dalam laboratorium kimia organik (Issue November). Program Studi Kimia, Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Hasanuddin.

Ganapathi, S. C., Holla, R., Shankara, S., Narayana, S. K. K., & Mundugaru, R. (2017). Microscopical evaluation, phytochemical analysis and HPTLC fingerprinting of tuber of actinoscirpus grossus (L.f.) goetgh. & d.A.Simpson. Pharmacognosy Journal, 9(5), 657–662. https://doi.org/ 10.5530/pj.2017.5.104

Gao, H., Idem, R., Liang, Z., & Tontiwachwuthikul, P. (2017). Density , viscosity , refractive index and heat capacity studies of aqueous ethylaminoethanol solutions at 293 . 15 to 323 . 15 K. Energy Procedia, 114(306), 1523–1529. https://doi.org/10.1016/ j.egypro.2017.03.1279

Gebre, H., Fisha, K., Kindeya, T., & Gebremichal, T. (2015). Synthesis of furfural from bagasse. International Letters of Chemistry, Physics and Astronomy, 57, 72–84. https://doi.org/10.18052/ www.scipress.com/ilcpa.57.72

Hambali, M., Novriyanti, R., & Anytia, S. D. (2016). Pemanfaatan limbah sekam padi untuk pembuatan furfural dengan variasi katalisator asam sulfat dan asam klorida. Jurnal Teknik Kimia, 22(3), 53–61.

Helmiyati, H., & Suci, R. P. (2019). Nanocomposite of cellulose-ZnO/SiO2 as catalyst biodiesel methyl ester from virgin coconut oil. AIP Conference Proceedings, 2168 (November). https://doi.org/ 10.1063/1.5132490

Lide, D. R., & Baysinger, G. (2005). TeamLRN CRC Handbook of chemistry and physics. CRC Press, Boca Raton.

Lomba, L., Giner, B., & Bandr, I. (2011). Green Chemistry physicochemical properties of green solvents derived from biomass †. 2062–2070. https://doi.org/10.1039/c0gc00853b

Lomba, L., Giner, B., Carmen, M., Aldea, L., & Lafuente, C. (2013). Thermophysical properties of furfural compounds.

Lukmandaru, G. (2011). Variability in the natural termite resistance of plantation teak wood and its relations with wood extractive content and color properties. Indonesian Journal of Forestry Research, 8(1), 17–31. https://doi.org/10.20886/ijfr.2011.8.1.17-31

Metkar, P. S., Till, E. J., Corbin, D. R., Pereira, C. J., Hutchenson, K. W., & Sengupta, S. K. (2015). Reactive distillation process for the production of furfural using solid acid catalysts. Green Chemistry, 17(3), 1453–1466. https://doi.org/ 10.1039/ c4gc01912a

Mitarlis, Ismono, & Tukiran. (2011). Pengembangan metode sintesis furfural berbahan dasar campuran limbah pertanian dalam rangka mewujudkan prinsip green chemistry. J. Manusia Dan Lingkungan, 18(3), 191–199.

Official Methods of Analysis of AOAC International 18th Ed. (2005). AOAC INTERNATIONAL, Gaithersburg, MD, USA, Official Method 2005.08.

Phitsuwan, P., Sakka, K., & Ratanakhanokchai, K. (2013). Improvement of lignocellulosic biomass in planta: A review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biomass and Bioenergy, 58, 390–405. https://doi.org/10.1016/j.biombioe.2013.08.027

Pressure, A. (2014). Production of furfural from corncobs agricultural waste by acid hydrolysis at atmospheric pressure. Jurnal Bahan Alam Terbarukan, 3(2), 71–75. https://doi.org/10.15294/ jbat.v3i2.5765

Rowell, R. M., Rowell, R. M., Pettersen, R., & Tshabalala, M. A. (2021). Handbook of wood chemistry and wood composites (Issue May). https://doi.org/10.1201/b12487-5

Senila, L., Miclean, M., Senila, M., Roman, M., & Roman, C. (2013). New analysis method of furfural obtained from wood applying an autohydrolysis pretreatment. Romanian Biotechnological Letters, 18(1), 7947–7955.

Services, W. B. and T. (2006). Furfural chemicals and biofuels from agriculture. In Development (Issue 06). http://www.rirdc.gov.au

States, U., & Toxicology, N. (1989). Furfural (Vol. 31, p. 429).

Suxia, R., Haiyan, X., Jinling, Z., Shunqing, L., Xiaofeng, H., & Tingzhou, L. (2012). Furfural production from rice husk using sulfuric acid and a solid acid catalyst through a two-stage process. Carbohydrate Research, 359, 1–6. https://doi.org/ 10.1016/j.carres.2012.07.006

Tappi. (2011). Lignin in Wood and Pulp. T222 Om-02, 1–7.

Uar, N. I., Wali, M., & Tuharea, M. S. (2018). Jurnal Agrohut. Sifat fisis kayu Marsegu (Nauclea orientalis L) dari Pulau Buru, Maluku, 9, 1–7.

Wang, Q., Qi, W., Wang, W., Zhang, Y., Leksawasdi, N., Zhuang, X., Yu, Q., & Yuan, Z. (2018). Production of furfural with high yields from corncob under extremely low water/solid ratios. Renewable Energy. https://doi.org/10.1016/ j.renene.2018.07.095

Winarti, C., Kurniati, M., Arif, A. B., Sasmitaloka, K. S., & Nurfadila. (2018). Cellulose-based nanohydrogel from corncob with chemical crosslinking methods. IOP Conference Series: Earth and Environmental Science, 209(1). https://doi.org/10.1088/1755-1315/209/1/012043

Yulfa, D., Mayerni, R., & Yusniwati, Y. (2019). Kualitas kimia serat beberapa klon rami asal Sumatera Barat. Agrotechnology Research Journal, 3(2), 115. https://doi.org/10.20961/agrotechresj.v3i2.34761

Zhang, L., He, Y., Zhu, Y., Liu, Y., & Wang, X. (2018). Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst. Bioresource Technology, 249, 536–541. https://doi.org/10.1016/j.biortech.2017.10.061

Zhang, L., Xi, G., Yu, K., Yu, H., & Wang, X. (2017). Furfural production from biomass-derived carbohydrates and lignocellulosic residues via heterogeneous acid catalysts. Industrial Crops & Products, 98, 68–75. https://doi.org/10.1016/ j.indcrop.2017.01.014

Zhang, N., Li, S., Xiong, L., Hong, Y., & Chen, Y. (2015). Cellulose-hemicellulose interaction in wood secondary cell-wall. Modelling and Simulation in Materials Science and Engineering, 23(8), 85010. https://doi.org/10.1088/0965-0393/23/8/085010

Zhao, Y. J., & Li, C. (2018). Biosynthesis of plant triterpenoid saponins in microbial cell factories [Review-article]. Journal of Agricultural and Food Chemistry, 66(46), 12155–12165. https://doi.org/ 10.1021/acs.jafc.8b04657




DOI: http://dx.doi.org/10.24960/jli.v11i2.7212.117-123

Refbacks

  • There are currently no refbacks.





Our journal indexed by:




Copyright © Baristand Industri Padang, 2015. Powered By OJS

Theme design credited to MEV edited by JLI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License