Utilization of mensiang (Actinoscorpus grosus L.) as a cellulose-rich material for furfural synthesis
Abstract
Keywords
Full Text:
PDFReferences
Andaka, G. (2011). Hidrolisis ampas tebu menjadi furfural dengan katalisator asam sulfat. Jurnal Teknologi, 4(2), 180–188.
Asrofi, M., Abral, H., Kasim, A., Pratoto, A., Mahardika, M., & Hafizulhaq, F. (2018). Mechanical properties of a water hyacinth nanofiber cellulose reinforced thermoplastic starch bionanocomposite: Effect of ultrasonic vibration during processing. Fibers, 6(2), 1–9. https://doi.org/10.3390/fib6020040
Bidin, N., Zakaria, M. H., Bujang, J. S., Aznadia, N., & Aziz, A. (2015). Suitability of aquatic plant fibers for handmade papermaking. 2015.
Brink, M., & Escobin, R. . (2016). Plant resource of south East Asia-fiber plants (Issue 17, p. 453). Backhuys Publisher: Leiden.
Butt, M. A., Zafar, M., Ahmad, M., Sultana, S., Ullah, F., Jan, G., Irfan, A., & Naqvi, S. A. Z. (2018). Morpho-palynological study of Cyperaceae from wetlands of Azad Jammu and Kashmir using SEM and LM. Microscopy Research and Technique, 81(5), 458–468. https://doi.org/10.1002/jemt. 22999
Coniwanti, P., H, G. S., & Handayani, E. (2016). Pembuatan furfural dari campuran biomassa ampas tebu ( Saccharum officinarum. 22(2), 37–45.
Farmakope Indonesia Edisi V. (2014). Kementrian Kesehatan RI.
Firdaus. (2011). Laporan hibah penulisan buku ajar. teknik dalam laboratorium kimia organik (Issue November). Program Studi Kimia, Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Hasanuddin.
Ganapathi, S. C., Holla, R., Shankara, S., Narayana, S. K. K., & Mundugaru, R. (2017). Microscopical evaluation, phytochemical analysis and HPTLC fingerprinting of tuber of actinoscirpus grossus (L.f.) goetgh. & d.A.Simpson. Pharmacognosy Journal, 9(5), 657–662. https://doi.org/ 10.5530/pj.2017.5.104
Gao, H., Idem, R., Liang, Z., & Tontiwachwuthikul, P. (2017). Density , viscosity , refractive index and heat capacity studies of aqueous ethylaminoethanol solutions at 293 . 15 to 323 . 15 K. Energy Procedia, 114(306), 1523–1529. https://doi.org/10.1016/ j.egypro.2017.03.1279
Gebre, H., Fisha, K., Kindeya, T., & Gebremichal, T. (2015). Synthesis of furfural from bagasse. International Letters of Chemistry, Physics and Astronomy, 57, 72–84. https://doi.org/10.18052/ www.scipress.com/ilcpa.57.72
Hambali, M., Novriyanti, R., & Anytia, S. D. (2016). Pemanfaatan limbah sekam padi untuk pembuatan furfural dengan variasi katalisator asam sulfat dan asam klorida. Jurnal Teknik Kimia, 22(3), 53–61.
Helmiyati, H., & Suci, R. P. (2019). Nanocomposite of cellulose-ZnO/SiO2 as catalyst biodiesel methyl ester from virgin coconut oil. AIP Conference Proceedings, 2168 (November). https://doi.org/ 10.1063/1.5132490
Lide, D. R., & Baysinger, G. (2005). TeamLRN CRC Handbook of chemistry and physics. CRC Press, Boca Raton.
Lomba, L., Giner, B., & Bandr, I. (2011). Green Chemistry physicochemical properties of green solvents derived from biomass †. 2062–2070. https://doi.org/10.1039/c0gc00853b
Lomba, L., Giner, B., Carmen, M., Aldea, L., & Lafuente, C. (2013). Thermophysical properties of furfural compounds.
Lukmandaru, G. (2011). Variability in the natural termite resistance of plantation teak wood and its relations with wood extractive content and color properties. Indonesian Journal of Forestry Research, 8(1), 17–31. https://doi.org/10.20886/ijfr.2011.8.1.17-31
Metkar, P. S., Till, E. J., Corbin, D. R., Pereira, C. J., Hutchenson, K. W., & Sengupta, S. K. (2015). Reactive distillation process for the production of furfural using solid acid catalysts. Green Chemistry, 17(3), 1453–1466. https://doi.org/ 10.1039/ c4gc01912a
Mitarlis, Ismono, & Tukiran. (2011). Pengembangan metode sintesis furfural berbahan dasar campuran limbah pertanian dalam rangka mewujudkan prinsip green chemistry. J. Manusia Dan Lingkungan, 18(3), 191–199.
Official Methods of Analysis of AOAC International 18th Ed. (2005). AOAC INTERNATIONAL, Gaithersburg, MD, USA, Official Method 2005.08.
Phitsuwan, P., Sakka, K., & Ratanakhanokchai, K. (2013). Improvement of lignocellulosic biomass in planta: A review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biomass and Bioenergy, 58, 390–405. https://doi.org/10.1016/j.biombioe.2013.08.027
Pressure, A. (2014). Production of furfural from corncobs agricultural waste by acid hydrolysis at atmospheric pressure. Jurnal Bahan Alam Terbarukan, 3(2), 71–75. https://doi.org/10.15294/ jbat.v3i2.5765
Rowell, R. M., Rowell, R. M., Pettersen, R., & Tshabalala, M. A. (2021). Handbook of wood chemistry and wood composites (Issue May). https://doi.org/10.1201/b12487-5
Senila, L., Miclean, M., Senila, M., Roman, M., & Roman, C. (2013). New analysis method of furfural obtained from wood applying an autohydrolysis pretreatment. Romanian Biotechnological Letters, 18(1), 7947–7955.
Services, W. B. and T. (2006). Furfural chemicals and biofuels from agriculture. In Development (Issue 06). http://www.rirdc.gov.au
States, U., & Toxicology, N. (1989). Furfural (Vol. 31, p. 429).
Suxia, R., Haiyan, X., Jinling, Z., Shunqing, L., Xiaofeng, H., & Tingzhou, L. (2012). Furfural production from rice husk using sulfuric acid and a solid acid catalyst through a two-stage process. Carbohydrate Research, 359, 1–6. https://doi.org/ 10.1016/j.carres.2012.07.006
Tappi. (2011). Lignin in Wood and Pulp. T222 Om-02, 1–7.
Uar, N. I., Wali, M., & Tuharea, M. S. (2018). Jurnal Agrohut. Sifat fisis kayu Marsegu (Nauclea orientalis L) dari Pulau Buru, Maluku, 9, 1–7.
Wang, Q., Qi, W., Wang, W., Zhang, Y., Leksawasdi, N., Zhuang, X., Yu, Q., & Yuan, Z. (2018). Production of furfural with high yields from corncob under extremely low water/solid ratios. Renewable Energy. https://doi.org/10.1016/ j.renene.2018.07.095
Winarti, C., Kurniati, M., Arif, A. B., Sasmitaloka, K. S., & Nurfadila. (2018). Cellulose-based nanohydrogel from corncob with chemical crosslinking methods. IOP Conference Series: Earth and Environmental Science, 209(1). https://doi.org/10.1088/1755-1315/209/1/012043
Yulfa, D., Mayerni, R., & Yusniwati, Y. (2019). Kualitas kimia serat beberapa klon rami asal Sumatera Barat. Agrotechnology Research Journal, 3(2), 115. https://doi.org/10.20961/agrotechresj.v3i2.34761
Zhang, L., He, Y., Zhu, Y., Liu, Y., & Wang, X. (2018). Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst. Bioresource Technology, 249, 536–541. https://doi.org/10.1016/j.biortech.2017.10.061
Zhang, L., Xi, G., Yu, K., Yu, H., & Wang, X. (2017). Furfural production from biomass-derived carbohydrates and lignocellulosic residues via heterogeneous acid catalysts. Industrial Crops & Products, 98, 68–75. https://doi.org/10.1016/ j.indcrop.2017.01.014
Zhang, N., Li, S., Xiong, L., Hong, Y., & Chen, Y. (2015). Cellulose-hemicellulose interaction in wood secondary cell-wall. Modelling and Simulation in Materials Science and Engineering, 23(8), 85010. https://doi.org/10.1088/0965-0393/23/8/085010
Zhao, Y. J., & Li, C. (2018). Biosynthesis of plant triterpenoid saponins in microbial cell factories [Review-article]. Journal of Agricultural and Food Chemistry, 66(46), 12155–12165. https://doi.org/ 10.1021/acs.jafc.8b04657
DOI: http://dx.doi.org/10.24960/jli.v11i2.7212.117-123
Refbacks
- There are currently no refbacks.
Our journal indexed by:
Copyright © Baristand Industri Padang, 2015. Powered By OJS
Theme design credited to MEV edited by JLI





This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License