Perbandingan larutan elektrolit H2SO4 dan KOH pada kinerja elektrokimia bahan elektroda berbasis karbon aktif sabut kelapa muda

Awitdrus Awitdrus, Zurya Hanifa, Agustino Agustino, Erman Taer, Rakhmawati Farma

Abstract


Selama beberapa tahun terakhir, pemanfaatan karbon aktif berbasis biomassa untuk elektroda superkapasitor telah mendapat perhatian luas karena ketersediaannya, lebih murah, dan sifat elektrokimia yang baik. Bahan elektroda untuk perangkat superkapasitor dibuat menggunakan karbon aktif sabut kelapa muda melalui proses aktivasi kimia dan fisika. Dalam penelitian ini, perbandingan kinerja elektrokimia elektroda berbasis sabut kelapa muda (SKM) dalam elektrolit berair 1 M H2SO4 dan 1 M KOH dievaluasi. Berdasarkan pola XRD, elektroda SKM yang disiapkan menunjukkan struktur amorf. Hasil penelitian menunjukkan bahwa elektroda SKM memiliki kapasitansi spesifik masing-masing 152 F/g dalam 1 M H2SO4 dan 102 F/g dalam 1 M KOH pada laju pemindaian 1 mV/s. Hasil ini menunjukkan bahwa karbon aktif sabut kelapa muda merupakan kandidat yang menjanjikan sebagai bahan elektroda untuk perangkat superkapasitor.

Keywords


bahan elektroda; elektrolit berair; karbon aktif; sabut kelapa muda; super kapasitor

Full Text:

PDF (Indonesian)

References


Agustino, A., Awtdrus, A., Farma, R., Taer, E., 2020. Pembuatan dan Karakterisasi Elektroda Karbon Aktif dari Serat Daun Nanas untuk Aplikasi Superkapasitor. J. Aceh Phys. Soc. 9, 1–8. https://doi.org/10.24815/jacps.v9i1.14895

Agustino, Awitdrus, Amri, A., Taslim, R., Taer, E., 2020. The Physical and Electrochemical Properties of Activated Carbon Electrode Derived from Pineapple Leaf Waste for Supercapacitor Applications. J. Phys. Conf. Ser. 1655. https://doi.org/10.1088/1742-6596/1655/1/012008

Awitdrus, Juliani, R., Taer, E., Farma, R., Iwantono, Deraman, M., 2018. Supercapacitor Electrodes Based on Corn Stalk Binderless Activated Carbon. J. Phys. Conf. Ser. 1120, 012005-1-012005–7. https://doi.org/10.1088/1742-6596/1120/1/012005

Awitdrus, Suwandi, D.A., Agustino, Taer, E., Farma, R., Syahputra, R.F., 2021. Effect of Aqueous Electrolyte to the Supercapacitor Electrode Performance Made from Sugar Palm Fronds Waste. J. Phys. Conf. Ser. 1951. https://doi.org/10.1088/1742-6596/1951/1/012009

Barnes, P., Smith, K., Parrish, R., Jones, C., Skinner, P., Storch, E., White, Q., Deng, C., Karsann, D., Lau, M.L., Dumais, J.J., Dufek, E.J., Xiong, H., 2020. A non-aqueous sodium hexafluorophosphate-based electrolyte degradation study: Formation and mitigation of hydrofluoric acid. J. Power Sources 447, 227363. https://doi.org/10.1016/j.jpowsour.2019.227363

Bhattacharjya, D., Yu, J.S., 2014. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. J. Power Sources 262, 224–231. https://doi.org/10.1016/j.jpowsour.2014.03.143

Chen, J., Fang, K., Chen, Q., Xu, J., Wong, C.P., 2018. Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors. Nano Energy 53, 337–344. https://doi.org/10.1016/j.nanoen.2018.08.056

González, A., Goikolea, E., Barrena, J.A., Mysyk, R., 2016. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206. https://doi.org/10.1016/j.rser.2015.12.249

Hu, Y., Tong, X., Zhuo, H., Zhong, L., Peng, X., Wang, S., Sun, R., 2016. 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: An attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv. 6, 15788–15795. https://doi.org/10.1039/c6ra00822d

Jayachandran, M., Rose, A., Maiyalagan, T., Poongodi, N., Vijayakumar, T., 2021. Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application. Electrochim. Acta 366, 137412. https://doi.org/10.1016/j.electacta.2020.137412

Joni, R., Syukri, S., Aziz, H., 2020. Study of activated carbon characteristic from ketaping fruit shell (Terminalia Catappa) as supercapasitors electrode. J. Aceh Phys. Soc. 10, 1–6. https://doi.org/10.24815/jacps.v10i1.17755

Kennedy, L.J., Ratnaji, T., Konikkara, N., Vijaya, J.J., 2018. Value added porous carbon from leather wastes as potential supercapacitor electrode using neutral electrolyte. J. Clean. Prod. 197, 930–936. https://doi.org/10.1016/j.jclepro.2018.06.244

Mossfika, E., Syukri, S., Aziz, H., 2020. Preparation of Activated Carbon from Tea Waste by NaOH Activation as A Supercapacitor Material. J. Aceh Phys. Soc. 9, 42–47. https://doi.org/10.24815/jacps.v9i2.15905

Perdana, Y.Z., Joni, R., Emriadi, Aziz, H., 2020. Pengaruh Aktivator KOH Terhadap Kinerja Karbon Aktif Dari Cangkang Kelapa Sawit Sebagai Bahan Elektroda Superkapasitor. J. Aceh Phys. Soc. 9, 13–19.

Ramayani, D., Hamzah, Y., Taer, E., Fisika, J., Riau, U., 2021. Analisa karbon aktif monolit berbahan asal ampas jus wortel untuk aplikasi elektroda superkapasitor. J. Aceh Phys. Soc. 10, 26–31. https://doi.org/10.24815/jacps.v10vi2i.18392

Reddy, K.O., Maheswari, C.U., Dhlamini, M.S., Mothudi, B.M., Kommula, V.P., Zhang, Jinming, Zhang, Jun, Rajulu, A.V., 2018. Extraction and characterization of cellulose single fibers from native african napier grass. Carbohydr. Polym. 188, 85–91. https://doi.org/10.1016/j.carbpol.2018.01.110

Saha, S., Maji, P., Pethsangave, D.A., Roy, A., Ray, A., Some, S., Das, S., 2019. Effect of morphological ordering on the electrochemical performance of MnO2-Graphene oxide composite. Electrochim. Acta 317, 199–210. https://doi.org/10.1016/j.electacta.2019.05.148

Shao, Y., El-Kady, M.F., Sun, J., Li, Y., Zhang, Q., Zhu, M., Wang, H., Dunn, B., Kaner, R.B., 2018. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 118, 9233–9280. https://doi.org/10.1021/acs.chemrev.8b00252

Shatla, A.S., Abd-El-Latif, A.A., Ayata, S., Demir, D., Baltruschat, H., 2020. Iodide adsorption at Au(111) electrode in non-aqueous electrolyte: AC-voltammetry and EIS studies. Electrochim. Acta 334, 135556. https://doi.org/10.1016/j.electacta.2019.135556

Sim, C.K., Majid, S.R., Mahmood, N.Z., 2015. Electrochemical performance of activated carbon derived from treated food-waste. Int. J. Electrochem. Sci. 10, 10157–10172.

Simon, P., Gogotsi, Y., 2008. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854.

Taer, E., Melisa, M., Agustino, A., Taslim, R., Sinta, W., Apriwandi, A., 2021a. Biomass-based activated carbon monolith from Tectona grandis leaf as supercapacitor electrode materials. Energy Sources, Part A Recover. Util. Environ. Eff. 00, 1–12. https://doi.org/10.1080/15567036.2021.1950871

Taer, E., Yanti, N., Mustika, W.S., Apriwandi, A., Taslim, R., Agustino, A., 2021b. Porous activated carbon monolith with nanosheet/nanofiber structure derived from the green stem of cassava for supercapacitor application. Int. J. Energy Res. 44, 10192–10205. https://doi.org/10.1002/er.5639

Thomas, B., Geng, S., Sain, M., Oksman, K., 2021. Hetero-porous, high-surface area green carbon aerogels for the next-generation energy storage applications. Nanomaterials 11, 1–19. https://doi.org/10.3390/nano11030653

Wu, X.L., Xu, A.W., 2014. Carbonaceous hydrogels and aerogels for supercapacitors. J. Mater. Chem. A 2, 4852–4864. https://doi.org/10.1039/c3ta13929h

Yetri, Y., Mursida, Dahlan, D., Taer, E., Agustino, Muldarisnur, 2020. Identification of cacao peels potential as a basic of electrodes environmental friendly supercapacitors. Key Eng. Mater. 846 KEM, 274–281. https://doi.org/10.4028/www.scientific.net/KEM.846.274

Yu, M., Li, J., Wang, L., 2017. KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chem. Eng. J. 310, 300–306. https://doi.org/10.1016/j.cej.2016.10.121

Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X., Zhang, L., 2009. Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrogen Energy 34, 4889–4899. https://doi.org/10.1016/j.ijhydene.2009.04.005

Zhi, M., Xiang, C., Li, J., Li, M., Wu, N., 2013. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale 5, 72–88. https://doi.org/10.1039/c2nr32040a

Zhu, X., Yu, S., Xu, K., Zhang, Y., Zhang, L., Lou, G., Wu, Y., Zhu, E., Chen, H., Shen, Z., Bao, B., Fu, S., 2018. Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem. Eng. Sci. 181, 36–45. https://doi.org/10.1016/j.ces.2018.02.004

Zulkifli, Awitdrus, Taer, E., 2018. Studi Awal Pemanfaatan Purun Tikus Sebagai Elektroda Superkapasitor Menggunakan Aktivasi Uap Air. J. Aceh Phys. Soc. 7, 30–34.




DOI: http://dx.doi.org/10.24960/jli.v12i1.7206.15-20

Refbacks

  • There are currently no refbacks.





Our journal indexed by:




Copyright © Baristand Industri Padang, 2015. Powered By OJS

Theme design credited to MEV edited by JLI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License