Perbandingan larutan elektrolit H2SO4 dan KOH pada kinerja elektrokimia bahan elektroda berbasis karbon aktif sabut kelapa muda
Abstract
Keywords
Full Text:
PDF (Indonesian)References
Agustino, A., Awtdrus, A., Farma, R., Taer, E., 2020. Pembuatan dan Karakterisasi Elektroda Karbon Aktif dari Serat Daun Nanas untuk Aplikasi Superkapasitor. J. Aceh Phys. Soc. 9, 1–8. https://doi.org/10.24815/jacps.v9i1.14895
Agustino, Awitdrus, Amri, A., Taslim, R., Taer, E., 2020. The Physical and Electrochemical Properties of Activated Carbon Electrode Derived from Pineapple Leaf Waste for Supercapacitor Applications. J. Phys. Conf. Ser. 1655. https://doi.org/10.1088/1742-6596/1655/1/012008
Awitdrus, Juliani, R., Taer, E., Farma, R., Iwantono, Deraman, M., 2018. Supercapacitor Electrodes Based on Corn Stalk Binderless Activated Carbon. J. Phys. Conf. Ser. 1120, 012005-1-012005–7. https://doi.org/10.1088/1742-6596/1120/1/012005
Awitdrus, Suwandi, D.A., Agustino, Taer, E., Farma, R., Syahputra, R.F., 2021. Effect of Aqueous Electrolyte to the Supercapacitor Electrode Performance Made from Sugar Palm Fronds Waste. J. Phys. Conf. Ser. 1951. https://doi.org/10.1088/1742-6596/1951/1/012009
Barnes, P., Smith, K., Parrish, R., Jones, C., Skinner, P., Storch, E., White, Q., Deng, C., Karsann, D., Lau, M.L., Dumais, J.J., Dufek, E.J., Xiong, H., 2020. A non-aqueous sodium hexafluorophosphate-based electrolyte degradation study: Formation and mitigation of hydrofluoric acid. J. Power Sources 447, 227363. https://doi.org/10.1016/j.jpowsour.2019.227363
Bhattacharjya, D., Yu, J.S., 2014. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. J. Power Sources 262, 224–231. https://doi.org/10.1016/j.jpowsour.2014.03.143
Chen, J., Fang, K., Chen, Q., Xu, J., Wong, C.P., 2018. Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors. Nano Energy 53, 337–344. https://doi.org/10.1016/j.nanoen.2018.08.056
González, A., Goikolea, E., Barrena, J.A., Mysyk, R., 2016. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206. https://doi.org/10.1016/j.rser.2015.12.249
Hu, Y., Tong, X., Zhuo, H., Zhong, L., Peng, X., Wang, S., Sun, R., 2016. 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: An attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv. 6, 15788–15795. https://doi.org/10.1039/c6ra00822d
Jayachandran, M., Rose, A., Maiyalagan, T., Poongodi, N., Vijayakumar, T., 2021. Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application. Electrochim. Acta 366, 137412. https://doi.org/10.1016/j.electacta.2020.137412
Joni, R., Syukri, S., Aziz, H., 2020. Study of activated carbon characteristic from ketaping fruit shell (Terminalia Catappa) as supercapasitors electrode. J. Aceh Phys. Soc. 10, 1–6. https://doi.org/10.24815/jacps.v10i1.17755
Kennedy, L.J., Ratnaji, T., Konikkara, N., Vijaya, J.J., 2018. Value added porous carbon from leather wastes as potential supercapacitor electrode using neutral electrolyte. J. Clean. Prod. 197, 930–936. https://doi.org/10.1016/j.jclepro.2018.06.244
Mossfika, E., Syukri, S., Aziz, H., 2020. Preparation of Activated Carbon from Tea Waste by NaOH Activation as A Supercapacitor Material. J. Aceh Phys. Soc. 9, 42–47. https://doi.org/10.24815/jacps.v9i2.15905
Perdana, Y.Z., Joni, R., Emriadi, Aziz, H., 2020. Pengaruh Aktivator KOH Terhadap Kinerja Karbon Aktif Dari Cangkang Kelapa Sawit Sebagai Bahan Elektroda Superkapasitor. J. Aceh Phys. Soc. 9, 13–19.
Ramayani, D., Hamzah, Y., Taer, E., Fisika, J., Riau, U., 2021. Analisa karbon aktif monolit berbahan asal ampas jus wortel untuk aplikasi elektroda superkapasitor. J. Aceh Phys. Soc. 10, 26–31. https://doi.org/10.24815/jacps.v10vi2i.18392
Reddy, K.O., Maheswari, C.U., Dhlamini, M.S., Mothudi, B.M., Kommula, V.P., Zhang, Jinming, Zhang, Jun, Rajulu, A.V., 2018. Extraction and characterization of cellulose single fibers from native african napier grass. Carbohydr. Polym. 188, 85–91. https://doi.org/10.1016/j.carbpol.2018.01.110
Saha, S., Maji, P., Pethsangave, D.A., Roy, A., Ray, A., Some, S., Das, S., 2019. Effect of morphological ordering on the electrochemical performance of MnO2-Graphene oxide composite. Electrochim. Acta 317, 199–210. https://doi.org/10.1016/j.electacta.2019.05.148
Shao, Y., El-Kady, M.F., Sun, J., Li, Y., Zhang, Q., Zhu, M., Wang, H., Dunn, B., Kaner, R.B., 2018. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 118, 9233–9280. https://doi.org/10.1021/acs.chemrev.8b00252
Shatla, A.S., Abd-El-Latif, A.A., Ayata, S., Demir, D., Baltruschat, H., 2020. Iodide adsorption at Au(111) electrode in non-aqueous electrolyte: AC-voltammetry and EIS studies. Electrochim. Acta 334, 135556. https://doi.org/10.1016/j.electacta.2019.135556
Sim, C.K., Majid, S.R., Mahmood, N.Z., 2015. Electrochemical performance of activated carbon derived from treated food-waste. Int. J. Electrochem. Sci. 10, 10157–10172.
Simon, P., Gogotsi, Y., 2008. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854.
Taer, E., Melisa, M., Agustino, A., Taslim, R., Sinta, W., Apriwandi, A., 2021a. Biomass-based activated carbon monolith from Tectona grandis leaf as supercapacitor electrode materials. Energy Sources, Part A Recover. Util. Environ. Eff. 00, 1–12. https://doi.org/10.1080/15567036.2021.1950871
Taer, E., Yanti, N., Mustika, W.S., Apriwandi, A., Taslim, R., Agustino, A., 2021b. Porous activated carbon monolith with nanosheet/nanofiber structure derived from the green stem of cassava for supercapacitor application. Int. J. Energy Res. 44, 10192–10205. https://doi.org/10.1002/er.5639
Thomas, B., Geng, S., Sain, M., Oksman, K., 2021. Hetero-porous, high-surface area green carbon aerogels for the next-generation energy storage applications. Nanomaterials 11, 1–19. https://doi.org/10.3390/nano11030653
Wu, X.L., Xu, A.W., 2014. Carbonaceous hydrogels and aerogels for supercapacitors. J. Mater. Chem. A 2, 4852–4864. https://doi.org/10.1039/c3ta13929h
Yetri, Y., Mursida, Dahlan, D., Taer, E., Agustino, Muldarisnur, 2020. Identification of cacao peels potential as a basic of electrodes environmental friendly supercapacitors. Key Eng. Mater. 846 KEM, 274–281. https://doi.org/10.4028/www.scientific.net/KEM.846.274
Yu, M., Li, J., Wang, L., 2017. KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chem. Eng. J. 310, 300–306. https://doi.org/10.1016/j.cej.2016.10.121
Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X., Zhang, L., 2009. Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrogen Energy 34, 4889–4899. https://doi.org/10.1016/j.ijhydene.2009.04.005
Zhi, M., Xiang, C., Li, J., Li, M., Wu, N., 2013. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale 5, 72–88. https://doi.org/10.1039/c2nr32040a
Zhu, X., Yu, S., Xu, K., Zhang, Y., Zhang, L., Lou, G., Wu, Y., Zhu, E., Chen, H., Shen, Z., Bao, B., Fu, S., 2018. Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem. Eng. Sci. 181, 36–45. https://doi.org/10.1016/j.ces.2018.02.004
Zulkifli, Awitdrus, Taer, E., 2018. Studi Awal Pemanfaatan Purun Tikus Sebagai Elektroda Superkapasitor Menggunakan Aktivasi Uap Air. J. Aceh Phys. Soc. 7, 30–34.
DOI: http://dx.doi.org/10.24960/jli.v12i1.7206.15-20
Refbacks
- There are currently no refbacks.
Our journal indexed by:
Copyright © Baristand Industri Padang, 2015. Powered By OJS
Theme design credited to MEV edited by JLI





This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License