Peningkatan daya buih susu skim sebagian rekombinasi dengan penggunaan penstabil

Ahmad Johari, Sugiyono Sugiyono, Dede Robiatul Adawiyah

Abstract


Susu banyak digunakan untuk memberikan rasa milky dan kestabilan buih pada minuman kopi seperti cappuccino dan latte. Karakteristik buih susu pada lapisan atas minuman kopi akan menentukan kualitas keseluruhan suatu produk. Penstabil berperan penting pada stabilitas buih dan tekstur produk akhir yang dihasilkan. Penelitian ini bertujuan untuk mendapatkan formula susu skim sebagian rekombinasi yang disukai oleh konsumen dan meningkatkan daya buih formula terpilih dengan penambahan penstabil microcrystalline cellulose (MCC) atau xanthan gum (XG). Konsentrasi xanthan gum yang digunakan adalah 0,10%, 0,15%, 0,20% dan konsenstrasi microcrystalline cellulose yang digunakan adalah 0,08%, 0,10%, 0,12%. Formula yang disukai oleh konsumen adalah formula dengan kadar laktosa 1,60%. Formula dengan penambahan microcrystalline cellulose tidak berbeda nyata dibandingkan dengan kontrol pada volume buih dan foam volume stability index (FVSI). Penambahan xanthan gum memberikan pengaruh nyata pada volume buih dan FVSI. Konsentrasi terbaik xanthan gum adalah 0,10% dengan suhu frothing 60 °C dan biaya formula Rp. 6.176,00 per Kg. Penambahan xanthan gum secara nyata meningkatkan nilai viskositas dan berdampak nyata pada sifat sensori. Sampel terpilih yang disimpan selama 0-7 hari pada suhu 4 oC memiliki nilai pH, viskositas, warna, volume buih dan FVSI yang tidak berbeda nyata serta sifat sensori (atribut gurih, milky dan asin) yang sama.

Keywords


daya buih; microcrystalline cellulose; susu skim sebagian rekombinasi; xanthan gum

Full Text:

PDF (Indonesian)

References


ASTM, 2005. Standard Test Methods for Rheological Properties of Non-Newtonian Materials by Rotation (Brookfield type) Viscometer. ASTM d 2196-99. 2005. Stand. Test Methods Rheol. Prop. Non-Newtonian Mater. by Rotat. (brookf. type) Viscometer. ASTM ASTM. 2005. Stand. Test MethASTM. 2005. Stand. Test Method Water Absorption, Bulk Density, Apparent Porosity, 43, 4.

BermÚdez-Aguirre, D., Mawson, R., Versteeg, K., Barbosa-CÁnovas, G. V., 2009. Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermo-sonication treatments. J. Food Qual. 32, 283–302. https://doi.org/10.1111/j.1745-4557.2009.00250.x

BPOM, B.P.O. dan M.I., 2019. PerKBPOM Nomor 34 Tahun 2019 Tentang Kategori Pangan. Badan Pengawas Obat dan Makanan 1–155.

Carter, B.G., Drake, M.A., 2018. Invited review: The effects of processing parameters on the flavor of whey protein ingredients. J. Dairy Sci. 101, 6691–6702. https://doi.org/10.3168/jds.2018-14571

Deotale, S., Dutta, S., Moses, J.A., Balasubramaniam, V.M., Anandharamakrishnan, C., 2020. Foaming Characteristics of Beverages and Its Relevance to Food Processing. Food Eng. Rev. 12, 229–250. https://doi.org/10.1007/s12393-020-09213-4

Hatakeyama, S., Akiyama, M., Yoneyama, R., Watanabe, K., Koizumi, R., Miyaji, K., Mizota, Y., Ikeda, M., Wakao, S., 2019. Effects of manufacturing conditions on the foaming properties of milk and sensory characteristics of foamed milk. Lwt. https://doi.org/10.1016/j.lwt.2018.09.082

Hettiarachchi, C.A., Corzo-Martínez, M., Mohan, M.S., Harte, F.M., 2018. Enhanced foaming and emulsifying properties of high-pressure-jet-processed skim milk. Int. Dairy J. 87, 60–66. https://doi.org/10.1016/j.idairyj.2018.06.004

Ho, T.M., Le, T.H.A., Yan, A., Bhandari, B.R., Bansal, N., 2019. Foaming properties and foam structure of milk during storage. Food Res. Int. 116, 379–386. https://doi.org/10.1016/j.foodres.2018.08.051

Huppertz, T., 2010. Foaming properties of milk: A review of the influence of composition and processing. Int. J. Dairy Technol. 63, 477–488. https://doi.org/10.1111/j.1471-0307.2010.00629.x

Illy, E., Navarini, L., 2011. Neglected Food Bubbles: The Espresso Coffee Foam. Food Biophys. 6, 335–348. https://doi.org/10.1007/s11483-011-9220-5

Jimenez-Junca, C., Sher, A., Gumy, J.C., Niranjan, K., 2015. Production of milk foams by steam injection: The effects of steam pressure and nozzle design. J. Food Eng. 166, 247–254. https://doi.org/10.1016/j.jfoodeng.2015.05.035

Khezri, M., Shahriari, S., Shahsavani, L., 2017. the Effect of Xanthan Gum and Temperature on Foam Stability of Milk-Based Espresso Coffees. J. Food Biosci. Technol. 7, 15–22.

Lawless, H.T., Heymann, H., 2010. Chapter 14. Acceptance testing, Sensory Evaluation of Food. https://doi.org/10.1007/978-1-4419-6488-5

Li, X., de Vries, R., 2018. Interfacial stabilization using complexes of plant proteins and polysaccharides. Curr. Opin. Food Sci. 21, 51–56. https://doi.org/10.1016/j.cofs.2018.05.012

Lu, C., Wang, G., Li, Y., Zhang, L., 2013. Effects of homogenisation pressures on physicochemical changes in different layers of ultra-high temperature whole milk during storage. Int. J. Dairy Technol. 66, 325–332. https://doi.org/10.1111/1471-0307.12055

Madimutsa, O.N., Gwala, W., Mujuru, F., Nyambi, C., 2018. Investigation of Factors Affecting Frothing Capacity of Pasteurised Whole Milk for Cappuccino Coffee VI, 144–151.

Martínez-Padilla, L.P., García-Rivera, J.L., Romero-Arreola, V., Casas-Alencáster, N.B., 2015. Effects of xanthan gum rheology on the foaming properties of whey protein concentrate. J. Food Eng. 156, 22–30. https://doi.org/10.1016/j.jfoodeng.2015.01.018

Mokrzycki, W., Tatol, M., 2011. Color difference Delta E - A survey. Mach. Graph. Vis. 20, 383–411.

Nsor-Atindana, J., Chen, M., Goff, H.D., Zhong, F., Sharif, H.R., Li, Y., 2017. Functionality and nutritional aspects of microcrystalline cellulose in food. Carbohydr. Polym. 172, 159–174. https://doi.org/10.1016/j.carbpol.2017.04.021

Oetjen, K., Bilke-Krause, C., Madani, M., Willers, T., 2014. Temperature effect on foamability, foam stability, and foam structure of milk. Colloids Surfaces A Physicochem. Eng. Asp. https://doi.org/10.1016/j.colsurfa.2014.01.086

Rogers, L., 2017. Discrimination Testing in Sensory Science: A Practical Handbook. Discrim. Test. Sens. Sci. A Pract. Handb.

Silva, S., Espiga, A., Niranjan, K., Livings, S., Gumy, J.C., Sher, A., 2008. Formation and Stability of Milk Foams, Bubbles in Food 2: Novelty, Health and Luxury. AACC International, Inc. https://doi.org/10.1016/B978-1-891127-59-5.50020-1

Singh-Ackbarali, D., Maharaj, R., 2014. Sensory Evaluation as a Tool in Determining Acceptability of Innovative Products Developed by Undergraduate Students in Food Science and Technology at The University of Trinidad and Tobago. J. Curric. Teach. 3, 10–27. https://doi.org/10.5430/jct.v3n1p10

Stephen, A.M., Phillips, G.O., Williams, P.A., 2016. Food Polysaccharides and Their Applications: Second Edition, Food Polysaccharides and Their Applications: Second Edition.

Sumonsiri, N., Kundacha, N., Pom-Iam, N., 2018. Effect of microcrystalline cellulose on physical characteristics and sensory acceptance of chocolate flavored milk. Curr. Res. Nutr. Food Sci. 6, 781–788. https://doi.org/10.12944/CRNFSJ.6.3.20

Yoon, S.-N., Yoo, B., 2016. Effect of pH on Rheological Properties of Dysphagia-Oriented Thickened Water. Prev. Nutr. Food Sci. 31, 73–77.




DOI: http://dx.doi.org/10.24960/jli.v11i2.6745.79-89

Refbacks

  • There are currently no refbacks.





Our journal indexed by:




Copyright © Baristand Industri Padang, 2015. Powered By OJS

Theme design credited to MEV edited by JLI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License