Karakteristik C–4–etoksi–3–metoksifenilkaliks[4]resorsinarena trifenilfosfonium klorida dalam mengadsorpsi anion Cr2O72–

Rika Wulandari, Dwi Siswanta, Jumina Jumina

Abstract


Anion logam berat Cr2O72– bersifat lebih toksik dibandingkan bentuk kationnya (Cr3+) yang dalam konsentrasi kecil dapat menyebabkan kanker bagi manusia. Salah satu cara yang  paling sederhana dalam menyerap zat pencemar yaitu melalui adsorpsi.  Senyawa C–4–etoksi–3–metoksifenilkaliks[4]resorsinarena trifenilfosfonium klorida (CKR) telah digunakan sebagai adsorben Cr2O72–.  Dalam penelitian ini dilakukan karakterisasi adsorben CKR lebih lanjut dan interaksinya terhadap Cr2O72–. Metode penelitian yang dilakukan adalah (1) karakterisasi adsorben CKR meliputi titik lebur dan sifat kelarutannya; dan (2) studi spektroskopi CKR dan kompleks CKR–Cr2O72– serta desorpsi. Hasil penelitian menunjukkan CKR memiliki titik lebur 259,7°C dan mampu larut dalam aseton, etanol, metanol, dimetilformamida, dan dimetilsulfoksida serta terdistribusi di dalam air dengan baik. CKR berukuran pori 35,50  (mesopori) memiliki luas permukaan spesifik (SBET) sebesar 5,749 m2/g dan total volume pori 10,21×10–3 cc/g. Interaksi antara situs aktif gugus fosfonium kuarterner dengan Cr2O72 dalam kompleks CKR–Cr2O72–melalui pergantian unsur Cl pada CKR oleh Cr2O72–dengan prosentase massa sekitar 0,07%.  Regenerasi adsorben CKR melalui desorpsi tunggal belum dapat membebaskan semua Cr2O72– yang telah terikat. Kemisorpsi CKR–Cr2O72– meliputi 13,16% pertukaran ion dan selebihnya diduga merupakan proses kelasi dengan interaksi logam–adsorben yang lebih kuat.

Keywords


Adsorbsi; C–4–etoksi–3–metoksifenilkaliks[4]resorsinarena trifenilfosfonium klorida; Cr2O72–; Mesopori; Kemisorpsi.

Full Text:

PDF (Indonesian)

References


Anovitz, L.M., Cole, D.R., 2015. Characterization and analysis of porosity and pore structures. Rev. Mineral. Geochemistry 80, 61–164. https://doi.org/ 10.2138/rmg.2015.80.04

Daneshvar, E., Zarrinmehr, M.J., Kousha, M., Hashtjin, A.M., Saratale, G.D., Maiti, A., Vithanage, M., Bhatnagar, A., 2019. Hexavalent chromium removal from water by microalgal-based materials: Adsorption, desorption and recovery studies. Bioresour. Technol. 293, 1–8. https://doi.org/ 10.1016/j.biortech.2019.122064

Efimova, N. V., Krasnopyorova, A.P., Yuhno, G.D., Scheglovskaya, A.A., 2017. Sorption of heavy metals by natural biopolymers. Adsorpt. Sci. Technol. 35, 595–601. https://doi.org/10.1177/ 0263617417703113

Gupta, V.K., Rastogi, A., 2008. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass. J. Hazard. Mater. 154, 347–354. https://doi.org/ 10.1016/j.jhazmat.2007.10.032

Huggins, F.E., Rezaee, M., Honaker, R.Q., Hower, J.C., 2016. On the removal of hexavalent chromium from a Class F fly ash. Waste Manag. 51, 105–110. https://doi.org/10.1016/j.wasman.2016.02.038

Jayakumar, R., Rajasimman, M., Karthikeyan, C., 2015. Sorption and desorption of hexavalent chromium using a novel brown marine algae Sargassum myriocystum. Korean J. Chem. Eng. 32, 2031–2046. https://doi.org/10.1007/s11814-015-0036-8

Jumina, Siswanta, D., Nofiati, K., Imawan, A.C., Priastomo, Y., Ohto, K., 2019. Synthesis of C-4-hydroxy-3-methoxyphenylcalix[4]resorcinarene and its application as adsorbent for lead(II), copper(II) and chromium(III). Bull. Chem. Soc. Jpn. 92, 825–831. https://doi.org/10.1246/bcsj.20180323

Lin, S.-K., 2000. Advanced Organic Chemistry. Part A: Structure and Mechanisms. Fourth Edition. by Francis A. Carey. Molecules 5, 1528–1529. https://doi.org/10.3390/51201528

Natalina, N., Firdaus, H., 2018. Penurunan kadar kromium heksavalen (Cr6+) dalam limbah batik menggunakan limbah udang (kitosan). Teknik 38, 99–102. https://doi.org/10.14710/teknik.v38i2.13403

Pradhan, D., Sukla, L.B., Sawyer, M., Rahman, P.K.S.M., 2017. Recent bioreduction of hexavalent chromium in wastewater treatment: A review. J. Ind. Eng. Chem. 55, 1–20. https://doi.org/10.1016/ j.jiec.2017.06.040

Saha, B., Orvig, C., 2010. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord. Chem. Rev. 254, 2959–2972. https://doi.org/10.1016/j.ccr.2010.06.005

Sessarego, S., Rodrigues, S.C.G., Xiao, Y., Lu, Q., Hill, J.M., 2019. Phosphonium-enhanced chitosan for Cr(VI) adsorption in wastewater treatment. Carbohydr. Polym. 211, 249–256. https://doi.org/ 10.1016/j.carbpol.2019.02.003

Shen, L., Saky, S.A., Yang, Z., Ho, S.H., Chen, C., Qin, L., Zhang, G., Wang, Y., Lu, Y., 2019. The critical utilization of active heterotrophic microalgae for bioremoval of Cr(VI) in organics co-contaminated wastewater. Chemosphere 228, 536–544. https:// doi.org/10.1016/j.chemosphere.2019.04.152

Szekeres, M., Tóth, J., Dékány, I., 2002. Specific surface area of stoeber silica determined by various experimental methods. Langmuir 18, 2678–2685. https://doi.org/10.1021/la011370j

Utomo, S.B., Jumina, Siswanta, D., Mustofa, 2013. Synthesis of tetrakis-N,N,N-trimethylammonium- methyl-C-3,4-dimethoxyphenylcalix[4]resorcinarene iodide based vanillin and its antidote activity for chromium(VI) intoxication. Indones. J. Chem. 13, 158–165. https://doi.org/10.22146/ijc.21299

Wulandari, R., Jumina, J., Siswanta, D., 2013. Synthesis and adsorption study of C-4-ethoxy-3-methoxy-phenylcalix[4] resorcinarene Triphenylphosphonium Chloride on Cr2O72-. Int. Conf. Chem. Biol. Environ. Eng. 58, 100–104. https://doi.org/ 10.7763/IPCBEE

Zakkiyah, A., 2018. Analisis sistem alir multi-communication untuk penentuan kromium heksavalen (Cr6+) pada limbah elektroplating secara spektrometri., in: Digital Repository Universitas Jember . Indonesia.




DOI: http://dx.doi.org/10.24960/jli.v11i1.6669.67-72

Refbacks

  • There are currently no refbacks.





Our journal indexed by:




Copyright © Baristand Industri Padang, 2015. Powered By OJS

Theme design credited to MEV edited by JLI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License