Effect of Organic Waste Concentration on Reactor Performance in Anaerobic Co-Fermentation of Wastewater of Tofu Industry and Organic Solid Waste

Sofyan Sofyan, Salmariza Salmariza

Abstract


Fuel crisis of oil and gas that are faced currently requires a thought to look for an alternative energy. The objective of this study was to observe the effect of organic waste addition on reactor performance and to increase the production of biogas as an alternative renewable energy. The wastewater used was the wastewater from agglomeration of soy pulp in tofu industry, while the solid waste used was a mixture of organic waste from household and market waste. The study was conducted by fermenting the wastewater and organic waste together with sample volume 300 ml. The reactors were operated semi-continuously with substrate feeding every two weeks. The treatment used in this study were mass comparison of organic waste and wastewater (0:100)%; (5:95)%; (10:90)%; (20:80)%; (30:70)%; and (40:60)%. The results showed that the addition of organic waste affected the reactor performance and the amount of biogas produced. Anaerobic co-fermentation of wastewater from tofu industry and organic waste produced biogas more than fermentation of wastewater without organic waste. The highest amount of biogas was obtained in the treatment of organic waste addition as much as 30% with average volume of biogas was 728 ml in steady state condition.

ABSTRAK

Krisis bahan bakar minyak dan gas yang dihadapi saat ini memerlukan pemikiran untuk mencari energi alternatif. Penelitian ini bertujuan untuk mengamati pengaruh penambahan sampah organik terhadap kinerja reaktor anaerobik dan meningkatkan produksi biogas sebagai salah satu energi alternatif terbarukan. Limbah cair yang digunakan adalah limbah cair dari penggumpalan bubur kedelai pada industri tahu, sedangkan sampah organik yang digunakan adalah gabungan sampah organik dari rumah tangga dan sampah pasar. Penelitian dilakukan dengan mendigestasi limbah cair industri tahu dan sampah organik secara bersama-sama dalam reaktor anaerobik dengan volume sampel 300 ml. Reaktor dioperasikan secara semi kontinyu dengan pengumpanan substrat setiap dua minggu sekali. Perlakuan yang dilakukan adalah perbandingan massa sampah organik dan limbah cair yaitu (0:100)%; (5:95)%; (10:90)%; (20:80)%; (30:70)%; dan (40:60)%. Hasil penelitian menunjukkan bahwa penambahan sampah organik mempengaruhi kinerja reaktor dan jumlah biogas yang dihasilkan. Fermentasi anaerobik limbah cair industri tahu dan sampah organik menghasilkan biogas lebih banyak dibandingkan dengan fermentasi limbah cair industri tahu tanpa sampah organik. Jumlah biogas terbanyak diperoleh pada perlakuan penambahan sampah organik 30% dengan volume biogas rata-rata 728 ml pada kondisi tunak.


Keywords


Organic waste; wastewater; tofu industry; anaerobic; co-fermentation

Full Text:

PDF

References


Angelidaki, I., & Ellegaard, L. 2003. Codigestion of manure and organic wastes in centralized biogas plants. Applied Biochemistry and Biotech-nology, 109, 95–105.

Arthur, R., Baidoo, M. F., & Antwi, E. 2011. Biogas as a potential renewable energy source: A Ghanain case study. Renewable Energy, 36(5), 1510-1516.

Bahrin, D., Destilia A., & Pertiwi, M. B. 2011. Pengaruh jenis sampah, komposisi masukan dan waktu tinggal terhadap komposisi biogas dari sampah organik pasar di Kota Palembang. Prosiding Seminar Nasional A VoER ke-3.

Budiyono, I. N., Widiasa, S., Johari, & Sunarso. 2010. The influence of total solid contents on biogas yield from cattle manure using rumen fluid inoculum. Energy Research Journal, 1 (1):6-11, 2010.

Creamer, K. S., Chen, Y., Williams, C. M., & Cheng, J. J. 2010. Stable thermophilic anaerobic digestion of dissolved air flotation (DAF) sludge by co-fermentation with swine manure. Bioresource Technology, 101, 3020–3024.

Dhadse, S., Kankal, N. C., & Kumari, B. 2010. Study of diverse methanogenic and non-methanogenic bacteria used for the enhancement of biogas production. International Journal of Life Sciences Biotechnology and Pharma Research, Vol. 1, No. 2, 175-192.

Fernandez, J., Perez, M., Romero, L.I. 2008. Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresource Technology. 99, 6075–6080.

Gamayanti, K. N., Pratiwiningrum, A., & Yusiati, L. M. 2012. Pengaruh penggunaan limbah cairan rumen dan lumpur gambut sebagai starter dalam proses fermentasi metanogenik. Buletin Peternakan, Volume 36, 32-39.

Ge, H.Q., Jensen, P.D., & Batstone, D.J. 2010. Pre-treatment mechanisms during thermophilic-mesophilic temperature phased anaerobic digestion of primary sludge. Water Research, 44 (1), 123–130.

Han, S., & Shin, H.-S. 2004. Biohydrogen production by anaerobic fermentation of food waste. International Journal of Hydrogen Energy, 29 (6), 569–577.

Heo, N., Park, S., Lee, J., Kang, H., & Park, D. 2003. Single-stage anaerobic codigestion for mixture wastes of simulated Korean food waste and waste activated sludge. Applied Biochemistry and Biotechnology, 107, 567–579.

Kelley, T. R., & Walker, P. M. 2000. Bacterial concentration reduction in swine waste amended livestock feed using a single-screw dry-extrusion process. Bioresource Technology, 75 (3), 189–195.

Kim, H. W., Shin, H. S., Han, S. K., & Oh, S. E. 2007. Response surface optimization of substrates for thermophilic anaerobic codigestion of sewage sludge and food waste. Journal of the Air and Waste Management Association, 57 (3), 309–318.

Lv, W., Schanbacher, F. L., & Yu, Z. 2010. Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes. Bioresource Technology, 101 (24), 9409–9414.

Martin-Gonzalez, L., Colturato, L.F., Font, X., Vicent, T. 2010. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: recovering a wasted methane potential and enhancing the biogas yield. Waste Management. 30, 1854–1859.

Nayono, S.E., Gallert, C., & Winter, J., 2009. Foodwaste as a co-substrate in a fed-batch anaerobic biowaste digester for constant biogas supply. Water Science and Technology, 59 (6), 1169-1178.

Oh, G., Zhang, L., & Jahng, D. 2008. Osmoprotectants enhance methane production from the anaerobic digestion of food wastes containing a high content of salt. Journal of Chemical Technology and Biotechnology, 83 (9), 1204–1210.

Raheman, H., & Mondal, S. 2012. Biogas production potential of jatropha seed cake. Biomass and Bioenergy, 37, 25-30.

Scholz, V., & Ellner, J. 2011. Use of biogas in fuel cells-current R&D. Jurnal of Sustainable Energy & Enviroment, Special Issue, 11-15.

Sofyan, Rahman, E. D., & Praputri, E. 2012. Pengaruh perbandingan sampah organik dan limbah cair industri tahu pada produksi biogas. Proceeding Seminar Nasional Rekayasa Sains dan Teknologi ke-2.

Vindis, P., Mursec, B., Janzekovic, M., & Cus, F. 2009. The impact of mesophilic and thermophilic anaerobic digestion on biogas production. Journal of Achievements in Materials and Manufacturing Engineering, 36(2), 192-198.

Wang, J., Zhang, H., Stabnikova, O., Ang, S., & Tay, J. 2005. A hybrid anaerobic solid–system for food waste digestion. Water Science Technology, 52, 223–228.

Ward, A.J., Hobbs, P.J., Holliman, P.J., Jones, D.L. 2008. Optimization of the anaerobic digestion of agricultural resources. Bioresource Technology. 99, 7928–7940.

Wikan, W. T., Asari, A., Ana, N., & Elita, R. 2009. Design and development of biogas reactor for farmer group Scale. Indonesian Journal of Agricultural IV, 121-128.

Zhang, Z. L., Zhang, L., Zhou, Y. L., Chen, J. C., Liang, Y. M., & Wei, L. 2013. Pilot-scale operation of enhanced anaerobic digestion of nutrient-deficient municipal sludge by ultrasonic pretreatment and co-digestion of kitchen garbage. Journal of Environmental Chemical Engineering, 1, 73-78.




DOI: http://dx.doi.org/10.24960/jli.v5i1.660.13-22

Refbacks

  • There are currently no refbacks.





Our journal indexed by:




Copyright © Baristand Industri Padang, 2015. Powered By OJS

Theme design credited to MEV edited by JLI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License