Rice Husk Packed Bed Column Reactor To Remove Cadmium From Landfill Leachate

Monik Kasman, Shaliza Ibrahim, Salmariza Salmariza


The landfill leachate can be a major problem due to large variability of high organic, inorganic, heavy metal content and toxicity characteristics from landfill leachate such as  cadmium. Thus, this study was aimed to observe the application of rice husk packed bed column to reduce cadmium from landfill leachate. Experiment was conducted in gravity down flow system by pumping landfill leachate into packed bed column. The effect of influent flow rate to adsorption capacity was studied by varying flow rate (5 mL/min and 10 mL/min). The effluent-influent concentration ratio Ce/C0 (%) as a function of throughput volume (L) was used to represent the breakthrough curve in column systems. Result shows that the flow rate of 5 mL/min was favorable to achieve higher removal rates with the percentage of cadmium was 57 %. At breakthrough time, the cadmium effluent concentration reached on 0.01 mg/l for both of flow rate.


Lindi yang dihasilkan dari TPA (Tempat Pembuangan Akhir) menimbulkan permasalahan lingkungan karena kandungan pencemarnya meliputi material organik, material anorganik, logam dan material beracun. Salah satu logam berat yang terdapat dalam lindi tersebut adalah kadmium. Penelitian ini bertujuan untuk mereduksi kadmium dalam lindi dengan menggunakan sekam padi yang diinstal dalam packed bed column. Lindi dipompakan dari tangki penampung lindi ke dalam packed bed column dan dialirkan dari atas ke bawah kolom secara gravitasi. Fokus pada penelitian ini adalah pengaruh laju alir influen terhadap kapasitas adsorpsi. Dimana lindi dialirkan dengan laju alir 5 mL/menit dan 10 mL/menit. Kurva breakthrough (titik jenuh) kolom dipresentasikan oleh hubungan antara rasio konsentrasi efluen-influen Ce/C0 (%) dan jumlah aliran lindi yang diolah dalam kolom. Hasil eksperimen menunjukkan bahwa persentase reduksi tertinggi dicapai pada laju alir 5 mL/menit yaitu 57%. Waktu jenuh kedua laju alir (5 mL/menit dan 10 mL/menit) tercapai saat konsentrasi efluen kadmium 0.01 mg/L.



Landfill leachate ; packed bed column; adsorption; rice husk; cadmium

Full Text:



Akhtar, M., et al. (2006). Sorption potential of rice husk for the removal of 2,4-dichlorepheno from aqueous solutions: Kinetic and thermodynamic investigations. J. Haz. Mat. B128, 44–52.

Augustine, A.A., Orike, B.D., and Edidiong, A.D. (2007). Adsorption Kinetics And Modeling Of Cu(II) Ion Sorption From Aqueous Solution by Mercaptoacetic Acid Modified Cassava (Manihot Sculenta Cranz). Wastes, EJEAFChe 6 (4), 2221-2234.

Bhattacharya, A.K., Naiya, T.K., Mandal, S.N., and Das, S.K. (2008). Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents. Chem. Eng. J. 137, 529–541.

Bishnoi, N. R., Bajaj, M., Sharma, N., & Gupta, S. (2004). Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresource Technology, 91(3), 305-307.

Daifullah, A. A. M., Awwad, N. S., & El-Reefy, S. A. (2004). Purification of wet phosphoric acid from ferric ions using modified rice husk. Chemical Engineering and Processing, 43, 193-201.

Duong, D. (1998). Adsorption analysis: equilibria and kinetics. London: Imperial College Press.

Feng, Q., Lin, Q., Gong, F., Shuici, S., & Shoya, M. (2004). Adsorption of lead and mercury by rice husk ash. Journal of Colloid and Interface Science, 278, 1-8.

Kargı, F., & Pamukoglu, M. Y. (2004). Adsorbent supplemented biological treatment of pre-treated landfill leachate by fed-batch operation. Bioresource Technology 94, 285-291.

Kiran, B., Kaushik, A., and Kaushik, C.P. (2006). Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium. Chem. Eng. J. 126, 147–153.

Kumar, U and Bandyopadhyay, M. (2006). Fixed Bed Column Study for Cd (II) Removal From Wastewater Using Treated Rice Husk. J. Haz. Waste Mat. B129, 253 – 259.

Li, C. (2008). Aqueous solutions and synthetic landfill Leachate using low-cost natural adsorbents. Thesis of Master of Science (Engineering). Canada: Queen’s University Kingston.

Lin, S.H and Chang, C.C. (2000). Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method. J. Water Res. 34 4243–4249.

Mahvi, A.H., Alavi, N., and Maleki, A. (2005). Application of Rice Husk and Its Ash in Cadmium Removal from Aqueous Solution. Pak. J. Bio. Sci. 8 (5), 721–725.

Ministry of Natural Resources and Environment. (1974). Akta Kualiti Alam Sekitar (Environmental Quality Act). Kualu Lumpur, Malaysia.

Mohan, S and Sreelakshmi, G. (2008). Fixed Bed Column Study For Heavy Metals Removal Using Phosphate Treated Rice Husk. J. Haz. Waste Mat. 153, 75–82.

Ponnusami, V., Krithika, V., Madhuram, R., & Srivastava, S. N. (2007). Biosorption of reactive dye using acidtreated rice husk: Factorial design analysis. Journal Hazardous Materials, 142, 397–403.

Qi, J., Li, Z., Guo Y and Xu, H. (2004). Adsorption of Phenolic Compounds On Micro- and Mesoporous Rice Husk-Based Active Carbons. Mat. Che. Phys. J. 87, 96–101.

Robinson, A.H. (2004). Landfill leachate treatment: An article based on a paper with the same title, which was presented at the 5th international Conference on Membrane Bioreactors (MBR5); 9 pp.

Sahu, J.N., Agarwal, S., Meikap, B.C., Biswas, M.N. (2009). Performance of A modified Multi Stage Bubble Column Reactor For Lead (II) and Biological Oxygen Demand Removal From Wastewater Using Activated Rice Husk. Haz. Waste Mat.161, 317 – 324.

Sreejalekshmi, G., Krishnan, K.A., and Anirudhan, T.S. (2009). Adsorption of Pb(II) and Pb(II)-citric acid on sawdust activated carbon: Kinetic and equilibrium isotherm studies. J. Haz. Mat. 161, 1506–1513.

Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2008). Optimization of parameters for adsorption of metal ions onto rice husk ash using Taguchi’s experimental design methodology. Chemical Engineering Journal 140, 136-144.

Teixeira Tarlye, C. R., & Zezzi Arruda, M. A. (2004). Biosorption of heavy metals using rice milling by products. Characterization and application for removal of metals from aqueous effluents. Chemosphere, 54, 987 - 995.

Tinamaz, E., and Ongen, A. (2006). Risks posed by unsanitary landfill leachate to groundwater quality. In: Tellam, J.H. et al. (Eds.), Nato Science Series Vol. 74: Urban Groundwater Management and Sustainability. Netherland: Springer Publisher (pp. 259–268).

Zhou, D., Zhang, L., Zhou, J., & Guo, S. (2004). Development of a fixed-bed column with cellulose/chitin beads to remove heavy-metal ions. Journal of Applied Polymer Science, 94, 684 - 691.

Zulkali, M. M. D., Ahmad, A. L., & Norulakmal, N. H. (2006). Oryza sativa L. husk as heavy metal adsorbent: Optimization with lead as model solution. Bioresource Technology 97, 21-25.

DOI: http://dx.doi.org/10.24960/jli.v4i1.640.9-17


  • There are currently no refbacks.

Copyright (c) 2014 monik kasman, Shaliza Ibrahim, Salmariza

Our journal indexed by:

Copyright © Baristand Industri Padang, 2015. Powered By OJS

Theme design credited to MEV edited by JLI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License