Biodegradabilitas Polikarboksilat Dari Asam Alginat dan Tapioka

Isananto Winursito

Abstract


Abundantly occurring carbohydrates in nature can be used to obtain functional and biodegradable polycarboxylate for its application in various industrial fields. Partially-dicarboxylated of carbohydrate in alginic acid and tapioca with dicarboxylation degree from 13 to 78 mol% were prepared. The biodegradability of dicarboxylated alginic acid and tapioca, evaluated by biochemical oxygen demand (BOD), depended on dicarboxylation degree. Dicarboxylated alginic acid and tapioca containing high remaining glucopyranose groups showed excellent biodegradation, though dicarboxylated alginic acid with the dicarboxylation degree of 56 mol% was no longer biodegradable. However, dicarboxylated tapioca was still biodegrade up to the dicarboxylation degree of 74 mol%.

ABSTRAK

Karbohidrat yang terdapat secara melimpah di alam dapat digunakan untuk membuat polikarboksilat fungsional dan biodegradabel yang dapat dipakai di berbagai bidang industri. Dikarboksilasi-sebagian telah dilakukan terhadap karbohidrat dalam asam alginat dan tapioka, menghasilkan polimer terdikarboksilasi dengan derajat dikarboksilasi 13-78 mol%. Biodegradabilitas asam alginat dan tapioka terdikarboksilasi, dihitung berdasarkan kebutuhan oksigen untuk aktivitas biokimia (BOD), tergantung pada derajat dikarboksilasi. Asam alginat dan tapioka terdikarboksilasi dengan sisa gugus glukopiranosa yang tinggi dapat terdegradasi dengan baik. Asam alginat terdikarboksilasi pada derajat dikarboksilasi 56 mol% sudah tidak mengalami biodegradasi lagi, namun tapioka terdikarboksilasi masih dapat mengalami biodegradasi sampai derajat dikarboksilasi 74 mol%.


Keywords


Biodegradability; polycarboxylate; alginic acid; tapioca; dicarboxylation

Full Text:

PDF

References


Anonim. 2002. Plastic Film to Promote Grass Growing on Barren Landscapes. Materials World, Vol. 10, No. 8, 36.

Anonim. 2013. Starch, http://en.wikipedia. org/wiki/Starch.

Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., Lancelot, C., Likens, G.E. 2009. Controlling Eutrophication: Nitrogen and Phosphorus. Science. Vol. 323, 1014-1015, 20 February 2009.

Freeman, M.B., Bender, T.M. 1993. An Environmental Fate and Safety Assessment or a Low Molecular Weight Polyacrylate Detergent Additive. Environ, Technol., 14, 101.

Gao, C., Xu, Y., Yan D., Chen, D. 2003. Water-soluble Degradable Hyperbranched Polyesters: Novel Candidates for Drug Delivery?. Biomacromolecules, Vol. 4, 704.

Jeffry. 2011. Eutrofikasi. http://jeffri022. student.umm.ac.id/2011/04/12/eutrofikasi/. Diakses 6 Maret 2013.

Luten, J., Steenis, J.H., Someren, R., Kemmink, J., Schuurmans-Nieuwenbroek, N.M.E., Koning, G.A., Crommelin, D.J.A., Nostrum, C.F., Hennink, W.E. 2003. Water-soluble Biodegradable Cationic Polyphosphazenes for Gene Delivery, J. of Controlled Release, 89, p. 483.

Malik, I. 2008. http://iwanmalik.wordpress. com/2008/05/14/mau-deterjen/

Nair, L.S., Laurencin, C.T. 2007. Biodegradable Polymers as Biomaterials. Polymers in Biomedical Applications, Vol. 32, 8-9, p.762.

Narayan, R. 2009. Fundamental Principles and Concepts of Biodegradability – Sorting through the facts, hypes, and claims of biodegradable plastics in the marketplace. BioPlastics magazine (01/09) vol 4; www.bioplasticsmagazine. com

Narayan, R. 2011. Science behind compostable plastics – ASTM standards. Presentation at USCC 19th Annual conference. January 26, 2011.

Nussinovitch, A. 2003. Water Soluble Polymer Applications in Foods, Blackwell Science Ltd, Oxford, UK.

OECD. 1981. OECD Guidelines for Testing of Chemicals, 301C, Modified MITI Test. Organization for Economic Cooperation and Development (OECD), Paris.

Pangendongan, O.R. 2011 Ristono, dari Varietas Singkong Gajah untuk Alternatif BBM. http://lemlit.unmul.ac.id/index.php?p=3&b=16&r=1, admin,1 Mei 2011. Diakses 2 Mei 2011

Park, J.H., Ye, M., Park, K. 2005. Biodegradable Polymers for Microencapsulation of Drugs, Molecules, Vol. 10, p. 146.

Swift, G. 1995. Opportunities for Environmentally Degradable Polymers. J. Macromol. Sci. - Pure Appl. Chem., A 32 (4), 641.

Winursito, I. 2012. Biodegradable and Water-Soluble Polycarboxylates Derived from Starch. Majalah Kulit, Karet dan Plastik. 28(1): 1-7.

Yulianto, K. 2007. Pengaruh Konsentrasi Natrium Hidroksida Terhadap Viskositas Natrium Alginat yang Diekstrak dari Sargassum duplicatum J.G. Agardh (Phaeophyta). Oseanologi dan Limnologi di Indonesia (33): 295-306.

Yunisa, S. 2007. Isolasi Asam Alginat dari Ganggang Coklat (Sargassum crassifolium J.Agard) Menggunakan Natrium Karbonat 7%. Skripsi. Fakultas Farmasi. Universitas Andalas. Padang.




DOI: http://dx.doi.org/10.24960/jli.v3i1.619.39-47

Refbacks

  • There are currently no refbacks.





Our journal indexed by:




Copyright © Baristand Industri Padang, 2015. Powered By OJS

Theme design credited to MEV edited by JLI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License