Mempelajari inhibisi korosi senyawa khellin dan visnagin pada atom besi menggunakan metode DFT (density functional theory)

Lidia Gusfi Marni, E Emriadi, S Syukri, I Imelda

Abstract


Penelitian secara komputasi telah dilakukan terhadap inhibisi korosi senyawa khellin dan visnagin pada atom besi menggunakan metode DFT (Density Fungsional Theory) tingkatan basis set B3LYP/6-311G (d, p) menggunakan program Gaussian.  Parameter kimia kuantum yang dihitung adalah energi orbital molekul tertinggi yang berisi elektron (EHOMO), energi orbital molekul terendah yang tidak berisi elektron (ELUMO), perbedaan energi celah (ΔE), momen dipol (µ), energi potensial ionisasi (I), afinitas elektron (A), elektronegativitas (χ), global hardness (η), global softness (σ), fraksi elektron yang ditransfer dari molekul inhibitor ke permukaan logam Fe (ΔN), elektrofilisitas (ω) energi total (ET) dan energi interaksi (Eint). Hasil penelitian menunjukkan bahwa senyawa khellin lebih baik sebagai inhibitor korosi dibandingkan senyawa visnagin.

ABSTRACT

Computational research has been investigated on inhibition corrosion of khellin and visnagin compounds on iron using DFT (Functional Density Theory)  method in the base set B3LYP / 6-311G (d, p) with Gaussian software. The quantum chemical parameters are the highest occupied molecular orbital energy (EHOMO), the lowest unoccupied molecular orbital energy (ELUMO), energy gap (ΔE), dipole moment (µ), ionization potential (I), electron affinity (A ), the electronegativity (χ), global hardness (η), global softness (σ), the fractions of electrons transferred from inhibitor to Fe (ΔN), electropilicity index (ω) total energy (ET) and the interaction energy (Eint). The results show that khellin to protect the corrosion of iron have a higher inhibitory potential compared to visnagin compound.


Full Text:

PDF (Indonesian)

References


Arthur, D.E., Uzairu, A., Mustapha, A., Adeniji, E.S., 2019. A computational adsorption and DFT studies on corrosion inhibition potential of some derivatives of phenyl-urea. Kenkyu J. Nanotechnol. Nanosci. 5, 19–32.

Bereket, G., Hu, E., 2002. Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium. J. Mol. Struct. 578, 79–88.

Bouklah, M., Harek, H., Touzani, R., Hammouti, B., Harek, Y., 2012. DFT and quantum chemical investigation of molecular properties of substituted pyrrolidinones. Arab. J. Chem. 5, 163–166. https://doi.org/10.1016/j.arabjc.2010.08.008

Chakraborty, S., Zhang, J., Krause, J.A., Guan, H., 2010. An efficient nickel catalyst for the reduction of carbon dioxide with a borane. J. Am. Chem. Soc. 132, 8872–8873. https://doi.org/10.1021/ja103982t

Comba, P., Hambley, T.W., 2001. Molecular modeling of inorganic compounds. Wiley-VCH.

Ebenso, E.E., Arslan, T., Kandermili, F., Caner, N., Love, I., 2010. Quantum chemical studies of some rhodanine azosulpha drugs as corrosion inhibitors for mild steel in acidic medium. Mater. Chem. Phys. 110, 1003–1018. https://doi.org/10.1002/qua

Eddy, N.O., 2011. Experimental and theoretical studies on some amino acids and their potential activity as inhibitors for the corrosion of mild steel, part 2. J. Adv. Res. 2, 35–47. https://doi.org/10.1016/j.jare. 2010.08.005

Efil, Kürşat; Bekdemir, Y., 2015. Theoretical study on corrosion inhibitory action of some aromatic imines with sulphanilic acid: A DFT study. Can. Chem. Trans. 3, 85–93. https://doi.org/10.13179/ canchemtrans.2015.03.01.0165

El-Etre, A.Y., 2006. Khillah extract as inhibitor for acid corrosion of SX 316 steel. Appl. Surf. Sci. 252, 8521–8525. https://doi.org/10.1016/j.apsusc.2005.11. 066

Emriadi, Santoni, A., Stiadi, Y., 2016. Adsorptive and thermodynamic properties of methanol extract of Toona sinensis leaves for the corrosion of mild steel in HCl medium. Der Pharma Chem. 8, 266–273.

Emriadi, Yulistia, V., Aziz, H., 2018. Corrosion inhibition of mild steel in hidrochloric acid solution by Gnetum gnemon. L peel extract as green inhibitor. Der Pharma Chem. 10, 79–85.

Fan, T., Sun, G., Zhao, L., Cui, X., Zhong, R., 2019. Metabolic activation and carcinogenesis of tobacco-specific nitrosamine N’-nitrosonornicotine (NNN): A density function theory and molecular docking study. Int. J. Environ. Res. Public Health 16, 1–20. https://doi.org/10.3390/ijerph16020178

Fiolhais C., Nogueira F., Marques, M., (Eds), 2003. A Primer in Density Functional Theory, Springer. Springer, Coimbra. https://doi.org/10.1017/ CBO9781107415324.004

Gece, G., 2017. Theoretical basis for the corrosion inhibition feature of Argan oil. Bulg. Chem. Commun. 49, 846–851.

Gece, G., Bilgiç, S., 2017. A computational study of two hexitol borates as corrosion inhibitors for steel. Int. J. Corros. Scale Inhib. 6, 476–484. https://doi.org/10.17675/2305-6894-2017-6-4-7

Gece, G., Bilgiç, S., 2012. Molecular-level understanding of the inhibition efficiency of some inhibitors of zinc corrosion by quantum chemical approach. Ind. Eng. Chem. Res. 51, 14115–14120. https://doi.org/10.1021/ie302324b

Gece, G., Bilgiç, S., 2010. A theoretical study on the inhibition efficiencies of some amino acids as corrosion inhibitors of nickel. Corros. Sci. 52, 3435–3443. https://doi.org/10.1016/j.corsci.2010.06.015

Granese, S.L., 1988. Study of the inhibitory action of nitrogen-containing compounds. Corrosion 44, 322–327. https://doi.org/10.5006/1.3583944

Gusti, D.R., Emriadi, Alif, A., Efdi, M., 2016. Surface characteristics on mild steel using aqueous extract of cassava (Manihot esculenta) leaves as a corrosion inhibitor. Der Pharma Chem. 8, 113–118.

Ju, H., Kai, Z.P., Li, Y., 2008. Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic media: A quantum chemical calculation. Corros. Sci. 50, 865–871. https://doi.org/10.1016/j.corsci.2007.10.009

Khaled, K.F., 2010. Corrosion control of copper in nitric acid solutions using some amino acids - A combined experimental and theoretical study. Corros. Sci. 52, 3225–3234. https://doi.org/10.1016/j.corsci.2010. 05.039

Khaled, K.F., Babic-Samardzija, K., Hackerman, N., 2004. Theoretical study of the structural effects of polymethylene amines on corrosion inhibition of iron in acid solutions. Electrochim. Acta 50, 2515–2520. https://doi.org/10.1016/j.electacta.2004.10.079

Khalil, N., 2003. Quantum chemical approach of corrosion inhibition. Electrochim. Acta 48, 2635–2640. https://doi.org/10.1016/S0013-4686(03) 00307-4

Li, X., Sevilla, M.D., Sanche, L., 2003. DFT investigation of dehalogenation of adenine-halouracil base pairs upon low-energy electron attachment. J. Am. Chem. Soc. 125, 8916–8920. https://doi.org/10.1021/ja034286u

Maleck, M., Serdeiro, M., Carvalho dos Santos, F., de Almeida, A., Ferreira, B., Guimarães, A., Gunaydin, K., 2013. Khellin: A furanochromone with toxicity against Oncopeltus fasciatus (Hemiptera) and Aedes aegypti (Diptera). J. Nat. Pharm. 4, 32. https://doi.org/10.4103/2229-5119.110348

Martinez, S., 2003. Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms. Mater. Chem. Phys. 77, 97–102. https://doi.org/10.1016/S0254-0584(01)00569-7

Nix, R., 2003. An introduction to surface chemistry. Queen Mary University of London, London.

Obot, I.B., Ebenso, E.E., Akpan, I.A., Gasem, Z.M., Afolabi, A.S., 2012. Thermodynamic and density functional theory investigation of sulphathiazole as green corrosion inhibitor at mild steel/Hydrochloric acid interface. Int. J. Electrochem. Sci. 7, 1978–1996.

Ortega, T, D., Pandiyan, T., Cruz, J., Garcia-Ochoa, E., 2007. Interaction of imidazoline compounds with Fen (n ) 1-4 Atoms) as a model for corrosion inhibition: DFT and electrochemical studies D. J. Phys. Chem. C 111, 9853–9866.

Pain, J.C., 2011. Koopmans’ theorem in the statistical Hartree-Fock theory. J. Phys. B At. Mol. Opt. Phys. 44.https://doi.org/10.1088/0953-4075/44/14/145001

Parr, R.G., Szentpály, L. V., Liu, S., 1999. Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924. https://doi.org/10.1021/ja983494x

Pastore, M., Angelis, F. De, Cnr, I., 2010. Aggregation of organic dyes on TiO2 in. ACS Nano 4, 556–562. https://doi.org/10.1021/nn901518s

Pauling, L., 1960. The nature of the chemical bond. Cornell University Press, Ithaca, New York. https://doi.org/10.1086/286682

Pearson, R.G., 1988. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27, 734–740. https://doi.org/10.1021/ ic00277a030

Prianto, B., 2007. Pemodelan kimia komputasi. Ber. Dirgant. 8, 4.

Quraishi, M.., Khan, S., 2005. Thiadiazoles-a potential class of heterocyclic inhibitors for prevention of mild steel corrosion in hydrochloric acid solution. Indian J. Chem. Technol. 12, 576–581.

Quraishi, M.A., Sardar, R., 2003. Hector bases – a new class of heterocyclic corrosion inhibitors for mild steel in acid solutions. J. Appl. Electrochem. 33, 1163–1168.

Şahin, M., Gece, G., Karcı, F., Bilgiç, S., 2008. Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low carbon steel in 3.5% NaCl medium. J. Appl. Electrochem. 38, 809–815.https://doi.org/10.1007/ s10800-008-9517-3

Samsonowicz, M., Regulska, E., 2017. Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 173, 757–771. https://doi.org/10.1016/ j.saa.2016.10.031

Samuelson, P.A., 2015. Proof that properly anticipated prices fluctuate randomly. LA Trobe University, Los Angles, pp. 25–38. https://doi.org/10.1142/ 9789814566926_0002

Sousa, S.F., Fernandes, P.A., Ramos, M.J., 2007. General performance of density functionals. J. Phys. Chem. A 111, 10439–10452.

Udhayakalaa, P.; Rajendiranb , T. V.; Gunasekaranc, S., 2014. Theoretical approach to the corrosion inhibition efficiency of some pyrimidine derivatives using DFT method of mild steel in HCl solution. J. Chem. Pharm. Res. 6, 1216–1224.

Udowo, V., 2018. Computational studies of the corrosion inhibition potentials of quercetin and coumarin. Arch. Org. Inorg. Chem. Sci. 2, 168–171. https://doi.org/10.32474/aoics.2018.02.000133

Xia, S., Qiu, M., Yu, L., Liu, F., Zhao, H., 2008. Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance. Corros. Sci. 50, 2021–2029. https://doi.org/10.1016/ j.corsci.2008.04.021

Yetri, Y., Gunawarman, Emriadi, Novesar, J., 2017. Theobroma cacao extract peels (TCPE) green inhibitor to recovery the mechanical properties of mild steel after corrosion. ARPN J. Eng. Appl. Sci. 12, 5325–5332.

Young, D.C., 2001. Computational chemistry: A practical guide for applying techniques to real world problems. John Wiley & Sons, Inc.

Zaafarany, I., Abdallah, M., 2010. Ethoxylated fatty amide as corrosion inhibitors for carbon steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 5, 18–28.

Zor, S., Kandemirli, F., Bingul, M., 2009. Inhibition effects of methionine and tyrosine on corrosion of iron in HCl solution: Electrochemical, FTIR, and quantum-chemical study. Prot. Met. Phys. Chem. Surfaces 45, 46–53. https://doi.org/10.1134/ s2070205109010079




DOI: http://dx.doi.org/10.24960/jli.v9i2.5403.111-118

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Lidia Gusfi Marni


Our journal indexed by:




Copyright © Baristand Industri Padang, 2015. Powered By OJS

Theme design credited to MEV edited by JLI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License