Degradasi senyawa fenol secara fotokatalisis dengan menggunakan katalis C-doped TiO2
Abstract
Fenol merupakan senyawa kimia yang banyak digunakan dalam proses industri. Akan tetapi fenol dalam konsentrasi berlebihan dapat menimbulkan efek buruk terhadap kehidupan manusia dan lingkungan pada umumnya. Pada penelitian ini, fenol didegradasi secara fotolisis tanpa dan dengan menggunakan katalis TiO2/C di bawah sinar UV (10 Watt, λ= 365 nm) dan sinar tampak (lampu philips LED 13 watt 1400 lux, λ= 465-640 nm). Larutan fenol yang telah didegradasi diukur dengan Spektrofotometer UV-Vis pada panjang gelombang 200-400 nm. Hasil karakterisasi XRD dan DRS UV-Vis memperlihatkan bahwa katalis modifikasi titania menggunakan unsur karbon berpotensi aktif pada sinar tampak. Aplikasi katalis TiO2/C mampu meningkatkan efisiensi dari degradasi fenol pada sistem fotolisis. Larutan fenol 8 mg/L terdegradasi sebanyak 38,98% dan 35,59% tanpa katalis dan meningkat menjadi 51,69% dan 66,10% dengan penambahan 5 mg katalis TiO2/C masing-masing di bawah sinar UV dan sinar tampak.
ABSTRACT
Phenol is a chemical compound that is widely used in industrial processes. However, phenol in excessive concentration can endanger human life and the environment. In this study, phenol was degraded without and using TiO2/C catalyst under UV-light (10 Watts, λ = 365 nm) and visible-light (13 watt Philips, lux= 1400, λ = 465-640 nm) photolysis. The degraded of phenol solution was measured by a UV-Vis spectrophotometer at a wavelength 200-400 nm. The results of XRD and DRS UV-Vis characterization show that the modified of titania catalyst using carbon potentially actives in visible-light. Application of TiO2/C catalyst can improve the efficiency of phenol degradation in photolysis system. Phenol solution with concentration 8 mg/L was degraded by 38.98% and 35.59% without catalyst and increased to be 51.69% and 66.10% in presence of 5 mg TiO2/C catalyst under UV-light and visible-light, respectively.
Keywords
Full Text:
PDF (Indonesian)References
Abdelwahab, O., Amin, N.K., El-Ashtoukhy, E.S.Z., 2009. Electrochemical removal of phenol from oil refinery wastewater. J. Hazard. Mater. 163, 711–716.https://doi.org/10.1016/j.jhazmat.2008.07.016
Alalm, M., Tawfik, A. 2014. Solar photocatalytic degradation of phenol in aqueous solutions using titanium dioxide. Waset.Org 1–4.
Arfi, F., Safni, S., Abdullah, Z., 2018. Degradation of paraquat in gramoxone pesticide with addition of ZnO. Molekul 12, 159. https://doi.org/10.20884/1.jm. 2017.12.2.326
Borji, S.H., Nasseri, S., Mahvi, A.H., Nabizadeh, R., Javadi, A.H., 2014. Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles. J. Environ. Heal. Sci. Eng. 12, 1–10. https://doi.org/10.1186/2052-336X-12-101
Gupta, S.M., Tripathi, M., 2011. A review of TiO2 nanoparticles. Chinese Sci. Bull. 56, 1639–1657. https://doi.org/10.1007/s11434-011-4476-1
Jyothi, K.P., 2016. Advanced oxidation processes in wastewater treatment : Investigations on the phenomenon of oscillation in the concentration of concurrently formed H2O2 in sono, photo and sonophoto catalytic systems. Thesis submitted to Cochin University of Science and. Cochin University of Science and Technology.
Khalid, N.R., Majid, A., Tahir, M.B., Niaz, N.A., Khalid, S., 2017. Carbonaceous- TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceram. Int. 43, 14552–14571. https://doi.org/10.1016/j.ceramint.2017.08.143
Kumar, N.S., Min, K., 2011. Removal of phenolic compounds from aqueous solutions by biosorption onto acacia leucocephala bark powder: Equilibrium and kinetic studies. J. Chil. Chem. Soc. 56, 539–545.
Mariappan, G., Vijayan, P., Suresh, C., Shanthi, K., 2014. Titania nanoparticles modified with nitrogen: enhanced visible-light photocatalytic activity. J. Environ. Nanotechnol 3, 2319–5541. https://doi.org/ 10.13074/jent.2014.12.144111
Meena, M.C., Band, R., Sharma, G., 2015. Phenol and its toxicity: A case report. Iran. J. Toxicol. 8, 1222–1224.
Mohamed, M.A., Salleh, W.N.W., Jaafar, J., Ismail, A.F., Nor, N.A.M., 2015. Photodegradation of phenol by N-Doped TiO2 anatase/rutile nanorods assembled microsphere under UV and visible light irradiation. Mater. Chem. Phys. 162, 113–123. https://doi.org/10.1016/j.matchemphys.2015.05.033
Mu, M.J., Fontelles-carceller, O., Ferrer, M., Fernández-garcía, M., Kubacka, A., 2016. Environmental disinfection capability of Ag/g-C3N4 composite photocatalysts under UV and visible light illumination. Appl. Catal. B Environ. 183, 86–95. https://doi.org/10.1016/j.apcatb.2015.10.024
Reza, K.M., Kurny, A., Gulshan, F., 2015. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl. Water Sci. 7, 1569–1578. https://doi.org/10.1007/s13201-015-0367-y
Safni, M., Putri, R.A., Wellia, D.V., Septiani, U., 2017. Photodegradation of Orange F3R Dyes : Effect of light sources and the addition of C, N- codoped TiO2. 9, 1–5.
Safni, S., Anggraini, D., Wellia, D., Khoiriah, K., 2015. Degradation of direct red-23 and direct violet dyes by ozonolysis and photolysis methods with uv light and solar irradiation using N-doped TiO2 Catalyst. J. Litbang Ind. 5, 123–130.
Safni, Wellia, D.V., Komala, P.S., Putri, R.A., 2015. Degradation of yellow-GCN by photolysis with UV-light and solar irradiation using C-N-codoped TiO2 catalyst. J. Chem. Pharm. Res. 7, 306–311.
Sharma, S., Ruparelia, J., Patel, M., 2011. A general review on advanced oxidation processes for waste water treatment. Int. Conf. Curr. trends Technol. 8–10.
Steiner, M.G., 2017. Photocatalytic decomposition of phenol under visible and uv light utilizing titanium dioxide based catalysts photocatalytic decomposition of phenol under visible and UV light.
Teh, C.M., Mohamed, A.R., 2011. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. J. Alloys Compd. 509, 1648–1660.https://doi.org/10.1016/j.jallcom.2010.10.181
Wellia, D.V., Fitria, D., Safni, S., 2018. C-N-Codoped TiO2 synthesis by using peroxo sol gel method for photocatalytic reduction of Cr(VI). J. Pure Appl. Chem. Res. 7, 26–32. https://doi.org/10.21776/ ub.jpacr.2018.007.01.373
Wiley, J., Sons, 2003. The chemistry of phenols, Chapter 7. An Interscience® Publication.
Wu, Y., Xing, M., Zhang, J., 2011. Gel-hydrothermal synthesis of carbon and boron co-doped TiO2 and evaluating its photocatalytic activity. J. Hazard. Mater. 192, 368–373. https://doi.org/10.1016/ j.jhazmat.2011.05.037
Yunus, N.N., Hamzah, F., So’Aib, M.S., Krishnan, J., 2017. Effect of catalyst loading on photocatalytic degradation of phenol by using N, S Co-doped TiO2. IOP Conf. Ser. Mater. Sci. Eng. 206. https://doi.org/10.1088/1757-899X/206/1/012092
Zhang, J., Zhou, P., Liu, J., Yu, J., 2014. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382–20386. https://doi.org/10.1039/c4cp02201g
DOI: http://dx.doi.org/10.24960/jli.v9i1.4675.51-57
Refbacks
- There are currently no refbacks.
Our journal indexed by:
Copyright © Baristand Industri Padang, 2015. Powered By OJS
Theme design credited to MEV edited by JLI





This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License