Penapisan, isolasi, dan karakterisasi mikroalga yang berpotensi sebagai sumber biodiesel dari perairan Danau Kerinci, Jambi

Riska Hernandi, Abdi Dharma, A Armaini

Abstract


Mikroalga menjadi sumber minyak nabati yang berpotensi sebagai bahan baku pembuatan biodiesel dengan kandungan lipid 30-70% dari berat biomassa kering dan komposisi asam lemak yang lengkap. Penelitian ini bertujuan untuk mempelajari keragaman spesies mikroalga dari perairan Danau Kerinci di Jambi, menganalisis kandungan lipid dan asam lemak isolat mikroalga. Mikroalga diisolasi dengan kombinasi teknik goresan, pengenceran berseri, dan mikropipet. Penentuan tingkat pertumbuhan dengan spektrofotometer UV-Vis. Penentuan berat biomassa kering secara gravimetri. Analisis kualitatif lipid dengan uji nile red menggunakan mikroskop flourescence. Analisis kuantitatif lipid dengan ekstraksi menggunakan n-heksana.  Analisis kandungan asam lemak dengan alat GC-MS. Terdapat 19 spesies mikroalga yang diidentifikasi dan 2 spesies berhasil ditapis dengan stres salinitas, yaitu MA1 (Scenedesmus rubescens) dan MA2 (Galdieria sulphuraria). MAI dan MA2 memiliki kandungan lipid yang lebih tinggi pada pupuk Growmore dibandingkan pada medium Bold’s Basal. MA1 memiliki kandungan lipid 31,95% pada medium Bold’s Basal dan 32,4% pada pupuk Growmore. MA2 memiliki kandungan lipid 28,72% pada medium Bold’s Basal dan 28,93% pada pupuk Growmore. Mikroalga MA1 dan MA2 dapat dijadikan sumber biodiesel dengan kandungan lipid dan asam lemak jenuh (C16:0, C18:0) yang tinggi.

ABSTRACT

Microalgae has been considered recently as a promising biomass feedstock with great potential for biodiesel production with 30-70% lipid content of the dry biomass weight and produces high fatty acid. This research investigated the diversity of microalgae species from waters of Lake Kerinci in Jambi and analysis of the lipid content and fatty acid of microalgae. The isolation was done by agar plate, serial dilution, and micropipette method. The growth rate of the isolated microalgae was determined by UV-Vis spectrophotometer. Dry biomass weight was determined gravimetrically. Nile red staining performed on the isolates to observe the potential of lipid content. Lipids were extracted using n-hexane. Fatty acid analysis by GC-MS. From the results of identification, there were 19 species of microalgae and 2 species were screened with salinity stress. Based on identification of the both isolates, it is known that MA1 isolate is Scenedesmus rubescens and MA2 is Galdieria sulphuraria. MAI and MA2 had higher lipid content in Growmore agrolyzer than Bold’s Basal medium. MA1 had lipid content 31.95% in Bold’s Basal medium and 32.4% in Growmore agrolyzer, MA2 had lipid content 28.72% in Bold’s Basal medium and 28.93 % in Growmore agrolyzer. MA1 and MA2 was a potential as a biodiesel source with high lipid content and saturated fatty acids (C16:0, C18:0).


Keywords


isolasi; mikroalga; lipid; asam lemak; biodiesel

Full Text:

PDF (Indonesian)

References


Alemán-Nava, G.S., Cuellar-Bermudez, S.P., Cuaresma, M., Bosma, R., Muylaert, K., Ritmann, B.E., Parra, R., 2016. How to us Nile Red, a selective fluorescent stain for microalgal neutral lipids. J. Microbiol. Methods 128, 74–79. https://doi.org/10.1016/j.mimet. 2016.07.011

Bartley, M.L., Boeing, W.J., Dungan, B.N., Holguin, F.O., Schaub, T., 2013. pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms. J. Appl. Phycol. 26, 1431–1437. https://doi.org/10. 1007/s10811-013-0177-2

Chaidir, Z., Fadjria, N., Armaini, Zainul, R., 2016. Isolation and molecular identification of freshwater microalgae in Maninjau Lake West Sumatra. Der Pharm. Lett. 8, 177–187.

Cheng, J., Huang, R., Li, T., Zhou, J., Cen, K., 2014. Biodiesel from wet microalgae: Extraction with hexane after the microwave-assisted transesterification of lipids. Bioresour. Technol. 170, 69–75. https://doi.org/10.1016/j.biortech.2014.07.089

Chisti, Y., 2007. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26, 126–131. https://doi.org/10.1016/j.tibtech.2007.12.002

Chokshi, K., Pancha, I., Trivedi, K., George, B., Maurya, R., Ghosh, A., Mishra, S., 2015. Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions. Bioresour. Technol. 180, 162–171. https://doi.org/10.1016/j.biortech.2014.12.102

Christenson, L., Sims, R., 2011. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 29, 686–702. https://doi.org/10.1016/j.biotechadv.2011. 05.015

Cooksey, K.E., Guckert, J.B., Williams, S.A., Callis, P.R., 1987. Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J. Microbiol. Methods 6, 333–345. https://doi.org/ 10.1016/0167-7012(87)90019-4

Debiagi, P.E.A., Trinchera, M., Frassoldati, A., Faravelli, T., Vinu, R., Ranzi, E., 2017. Algae characterization and multistep pyrolysis mechanism. J. Anal. Appl. Pyrolysis 128, 423–436. https://doi.org/10.1016/j.jaap.2017.08.007

Dharma, A., Sekatresna, W., Zein, R., Chaidir, Z., Nasir, N., 2017. ISSN 0975-413X CODEN (USA): PCHHAX Chlorophyll and Total Carotenoid Contents in Microalgae Isolated from Local Industry Effluent in West Sumatera, Indonesia. Pharma Chem. 9, 9–11.

Duong, V.T., Li, Y., Nowak, E., Schenk, P.M., 2012. Microalgae isolation and selection for prospective biodiesel production. Energies 5, 1835–1849. https://doi.org/10.3390/en5061835

Dyer, W.., Bligh, E.., 1959. Canadian Journal of Biochemistry and Physiology. Can. J. Biochem. Physiol. 37, 911–917. https://doi.org/dx.doi.org/ 10,1139/cjm2014-0700

Gouveia, L., Oliveira, A.C., 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36, 269–274. https://doi.org/10.1007/ s10295-008-0495-6

Govender, T., Ramanna, L., Rawat, I., Bux, F., 2012. BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour. Technol. 114, 507–511. https://doi.org/10.1016/j.biortech. 2012.03.024

Griffiths, M.J., Van Hille, R.P., Harrison, S.T.L., 2010. Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids 45, 1053–1060. https://doi.org/10.1007/ s11745-010-3468-2

Gui, M.M., Lee, K.T., Bhatia, S., 2008. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33, 1646–1653. https://doi.org/10.1016/j.energy.2008.06.002

Hosikian, A., Lim, S., Halim, R., Danquah, M.K., 2010. Chlorophyll extraction from microalgae: A review on the process engineering aspects. Int. J. Chem. Eng. 2010. https://doi.org/10.1155/2010/391632

Lee, Y.-K., Chen, W., Shen, H., Han, D., Li, Y., Jones, H.D.T., Timlin, J.A., Hu, Q., 2013. Basic culturing techniques. in: handbook of microalgal culture Applied Phycology and Biotechnology., in: Richmond, A., Emeritus (Eds.), Handbook of Microalgal Culture-Applied Phycology and Biotechnology. Wiley Blackwell, pp. 37–68.

Litchtenthaler, H.K., Buschmann, C., 2001. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. F4.3.1-F4.3.8.

Martín, C., Moure, A., Martín, G., Carrillo, E., Domínguez, H., Parajó, J.C., 2010. Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass and Bioenergy 34, 533–538. https://doi.org/10. 1016/j.biombioe.2009.12.019

Mata, T.M., Almeida, R., Caetano, N.S., 2013. Effect of the culture nutrients on the biomass and lipid productivities of microalgae dunaliella tertiolecta. Chem. Eng. Trans. 32, 973–978. https://doi.org/ 10.3303/CET1332163

Mata, T.M., Martins, A.A., Caetano, N.S., 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 14, 217–232. https://doi.org/10.1016/j.rser.2009. 07.020

Miao, X., Wu, Q., 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97, 841–846. https://doi.org/10.1016/j.biortech.2005. 04.008

Minhas, A.K., Hodgson, P., Barrow, C.J., Adholeya, A., 2016. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front. Microbiol. 7, 1–19. https://doi.org/10.3389/fmicb.2016.00546

Musharraf, S.G., Ahmed, M.A., Zehra, N., Kabir, N., Choudhary, M.I., Rahman, A. ur, 2012. Biodiesel production from microalgal isolates of southern Pakistan and quantification of FAMEs by GC-MS/MS analysis. Chem. Cent. J. 6, 1–10. https://doi.org/10.1186/1752-153X-6-149

Nugraha, A.D., Dharma, A., Mardiah, E., Salim, M., 2015. Effect of Urea Addition on Spirulina platensis Growth for Production of Lipid and Omega-3 Fatty Acids . Res. J. Pharm. , Biol. Chem. Sci. 6, 1005–1009.

Patil, V., Tran, K.Q., Giselrød, H.R., 2008. Towards sustainable production of biofuels from microalgae. Int. J. Mol. Sci. 9, 1188–1195. https://doi.org/10. 3390/ijms9071188

Prasad, R.N., Sanghamitra, K., Antonia, G.-M., Juan, G.-V., Benjamin, R.-G., Luis, I.-M.J., Guillermo, V.-V., 2013. Isolation, Identification and Germplasm Preservation of Different Native & lt;i>Spirulina</i> Species from Western Mexico. Am. J. Plant Sci. 4, 65–71. https://doi.org/10.4236/ajps.2013.412A2009

Praveenkumar, R., Kim, B., Choi, E., Lee, K., Park, J.Y., Lee, J.S., Lee, Y.C., Oh, Y.K., 2014. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Bioresour. Technol. 171, 500–505. https://doi.org/10.1016/j.biortech.2014.08.112

Qiao, H., Cong, C., Sun, C., Li, B., Wang, J., Zhang, L., 2016. Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum. Aquaculture 452, 311–317. https://doi.org/10.1016/j.aquaculture.2015. 11.011

Ramaraj, R., Tsai, D.D.W., Chen, P.H., 2013. Chlorophyll is not accurate measurement for Algal Biomass. Chiang Mai J. Sci. 40, 547–555.

Rao, A.R., Dayananda, C., Sarada, R., Shamala, T.R., Ravishankar, G.A., 2007. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour. Technol. 98, 560–564. https://doi.org/10.1016/j.biortech.2006.02.007

Raya, I., Anshar, A.M., Mayasari, E., Dwiyana, Z., Asdar, M., 2016. Chorella vulgaris and Spirulina platensis : Concentration of protein, Docosahexaenoic Acid Chorella (DHA), Eicosapentaenoic Acid (EPA) and variation concentration of maltodextrin via microencapsulation method. Int. J. Appl. Chem. 12, 539–548.

Rinaldi, R., Armaini, Salim, M., 2015. A Selection of Nitrogen Source for Biomass and Lipid Production of Scenedesmus dimorphus Microalgae. Res. J. Pharm. Biol. Chem. Sci. 6, 143–147.

Salama, E.S., Kim, H.C., Abou-Shanab, R.A.I., Ji, M.K., Oh, Y.K., Kim, S.H., Jeon, B.H., 2013. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosyst. Eng. 36, 827–833. https://doi.org/10.1007/s00449-013-0919-1

Vishnu, N., Sumathi, R., 2014. Isolation of fresh water microalgae Chlorella sp and its antimicrobial activity on selected pathogens. Int. J. Adv. Res. Biol. Sci. 1, 36–43.

Widjaja, A., Chien, C.C., Ju, Y.H., 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng. 40, 13–20. https://doi.org/10.1016/j.jtice.2008. 07.007

Yang, X., Liu, P., Hao, Z., Shi, J., Zhang, S., 2012. Characterization and identification of freshwater microalgal strains toward biofuel production. BioResources 7, 686–695.




DOI: http://dx.doi.org/10.24960/jli.v9i1.4326.41-49

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Riska Hernandi, Abdi Dharma, Abdi Dharma, Armaini Armaini, Armaini Armaini


Our journal indexed by:




Copyright © Baristand Industri Padang, 2015. Powered By OJS

Theme design credited to MEV edited by JLI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License