Pengaruh pH dan dosis adsorben dari limbah lumpur aktif industri crumb rubber terhadap kapasitas penyerapan ion Cd(II) dan Zn(II)
Abstract
Pernelitian dengan sistim batch telah dilakukan untuk mempelajari pengaruh perlakuan pH larutan dan dosis adsorben yang dibuat dari limbah lumpur aktif industri crumb rubber (LLA-ICR) terhadap kapasitas adsorpsi dan efisiensi penyisihan ion Cd(II) dan Zn(II) dalam larutan. Pengamatan meliputi variasi pH larutan pada range 1-7 dan dosis adsorben LLA-ICR 0,1 g - 1,0 g. Karakterisasi adsorben sebelum dan sesudah proses adsorpsi dilakukan dengan menggunakan FTIR, XRF dan SEM–EDX. Hasil penelitian menunjukkan bahwa perlakuan pH larutan dan dosis adsorben berpengaruh pada kapasitas adsorpsi dan efisiensi penyisihan ion Cd(II), dan Zn(II). pH optimum didapatkan pada pH 5. Semakin rendah dosis adsorben, maka semakin tinggi kapasitas adsorpsi namun semakin rendah efisiensi penyisihan ion Cd(II) dan Zn(II). Dosis adsorben optimum didapatkan pada 0,1g, dengan kapasitas adsorpsi dan efisiensi penyisihan ion Cd(II) > Zn(II). Kapasitas adsorpsi maksimum untuk ion Cd(II) dan Zn(II) berturut-turut 29,8 mg/g dan 10,3 mg/g. Efisiensi penyisihan maksimum intuk ion Cd(II) dan ion Zn(II) adalah 95,4% dan 87,9%.
Abstract
A batch system has been carried out to study the treatment effect of pH solution and adsorbent dosage derived from crumb rubber (LLA-ICR) industrial activated sludge on the adsorption capacity and removal efficiency of Cd(II) and Zn(II) ions in aqueous solution. Observations included variations in the the solution pH in the range 1-7 and the LLA-ICR adsorbent dosage of 0.1 g - 1.0 g. Characterization of the adsorbent before and after the adsorption process was carried out using FTIR, XRF, and SEM-EDX. The results showed that the treatment of the pH solution and the adsorbent dose affected the adsorption capacity and removal efficiency of Cd(II) and Zn(II) ions. The optimum pH was obtained at pH 5. The lower the adsorbent dose the higher the adsorption capacity, however the lower the efficiency removal of Cd(II) and Zn(II) ions. The optimum adsorbent dosage was obtained at 0.1 g with adsorption capacity and removal efficiency of Cd(II) > Zn(II) ions. The maximum adsorption capacity for Cd(II) and Zn(II) ions were 29.8 mg/g and 10.3 mg/g respectively. The maximum removal efficiency forCd (II) and Zn(II) ions were 95.4% and 87.9%.
Keywords
Full Text:
PDF (Indonesian)References
Abo-El-Enein, S.A., Shebl, A., Abo El-Dahab, S.A., 2017. Drinking water treatment sludge as an efficient adsorbent for heavy metals removal. Appl. Clay Sci. 146, 343–349. doi:10.1016/j.clay.2017.06.027
Artola, a, Martin, M., Balaguer, M., Rigola, M., 2000. Isotherm Model Analysis for the Adsorption of Cd (II), Cu (II), Ni (II), and Zn (II) on Anaerobically Digested Sludge. J. Colloid Interface Sci. 232, 64–70. doi:10.1006/jcis.2000.7186
Bhatnagar, A., Minocha, A.K., 2009. Utilization of industrial waste for cadmium removal from water and immobilization in cement. Chem. Eng. J. 150, 145–151. doi:10.1016/j.cej.2008.12.013
Bhattacharya, A.K., Mandal, S.N., Das, S.K., 2006. Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chem. Eng. J. 123, 43–51.
Brady, J.M., Tobin, J.M., 1995. Binding of hard and soft metal ions to Rhizopus arrhizus biomass. Enzyme Microb. Technol. 17, 791–796. doi:10.1016/0141-0229(95)00142-R
Cheng, F., Luo, H., Hu, L., Yu, B., Luo, Z., Fidalgo De Cortalezzi, M., 2016. Sludge carbonization and activation: From hazardous waste to functional materials for water treatment. J. Environ. Chem. Eng. 4, 4574–4586. doi:10.1016/j.jece.2016.11.013
Ding, R., Zhang, P., Seredych, M., Bandosz, T.J., 2012. Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents. Water Res. 46, 4081–4090. doi:10.1016/j.watres.2012.05.013
Farhan, A.M., Al-Dujaili, A.H., Awwad, A.M., 2013. Equilibrium and kinetic studies of cadmium(II) and lead(II) ions biosorption onto Ficus carcia leaves. Int. J. Ind. Chem. 4, 1–8. doi:10.1186/2228-5547-4-24
Freitas, O.M.M., Martins, R.J.E., Delerue-Matos, C.M., Boaventura, R.A.R., 2008. Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: Kinetic modelling. J. Hazard. Mater. 153, 493–501.
Fu, F., Wang, Q., 2011. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92, 407–418. doi:10.1016/j.jenvman.2010.11.011
Gómez-Pacheco, C. V., Rivera-Utrilla, J., Sánchez-Polo, M., López-Peñalver, J.J., 2012. Optimization of the preparation process of biological sludge adsorbents for application in water treatment. J. Hazard. Mater. 217–218, 76–84. doi:10.1016/j.jhazmat.2012.02.067
González, P.G., Pliego-Cuervo, Y.B., 2014. Adsorption of Cd(II), Hg(II) and Zn(II) from aqueous solution using mesoporous activated carbon produced from Bambusa vulgaris striata. Chem. Eng. Res. Des. 92, 1–10. doi:10.1016/j.cherd.2014.02.013
Gupta, N., Amritphale, S.S., Chandra, N., 2010. Removal of Zn (II) from aqueous solution by using hybrid precursor of silicon and carbon. Bioresour. Technol. 101, 3355–3362.
Gutiérrez-Segura, E., Solache-Ríos, M., Colín-Cruz, A., Fall, C., 2012. Adsorption of cadmium by Na and Fe modified zeolitic tuffs and carbonaceous material from pyrolyzed sewage sludge. J. Environ. Manage. 97, 6–13. doi:10.1016/j.jenvman.2011.11.010
Hadi, P., Xu, M., Ning, C., Sze Ki Lin, C., McKay, G., 2015. A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chem. Eng. J. doi:10.1016/j.cej.2014.08.088
Harmiwati, Salmariza, S., Kurniawati, D., Lestari, I., Chaidir, Z., Desmiarti, R., Zein, R., 2017. Biosorption of Pb (II) And Zn (II) Metal Ions from Aqueous Solutions by Stem Tree of Soybean Using Continuous. ARPN J. Eng. Appl. Sci. 12, 5258–5262.
Hunsom, M., Autthanit, C., 2013. Adsorptive purification of crude glycerol by sewage sludge-derived activated carbon prepared by chemical activation with H3PO4, K2CO3 and KOH. Chem. Eng. J. 229, 334–343.
Ihsanullah, Al-Khaldi, F.A., Abusharkh, B., Khaled, M., Atieh, M.A., Nasser, M.S., Laoui, T., Saleh, T.A., Agarwal, S., Tyagi, I., Gupta, V.K., 2015. Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents. J. Mol. Liq. 204, 255–263. doi:10.1016/j.molliq.2015.01.033
Khosravan, A., Lashkari, B., 2011. Adsorption of Cd(II) by Dried Activated Sludge A. Iran. J. Chem. Eng. 8, 41–56.
Lestari, I., Sy, S., Kurniawati, D., Alif, A., Zein, R., Aziz, H., 2016. Effect of pH on the biosorption of heavy metal by alginate immobilized durian (Durio zibethinus) seed. Der Pharma Chem. 8, 294–300.
Li, M., Li, M., Feng, C., Zeng, Q., 2014. Preparation and characterization of multi-carboxyl-functionalized silica gel for removal of Cu (II), Cd (II), Ni (II) and Zn (II) from aqueous solution. Appl. Surf. Sci. 314, 1063–1069. doi:10.1016/j.apsusc.2014.06.038
Liu, W., Zhang, J., Jin, Y., Zhao, X., Cai, Z., 2015. Adsorption of Pb(II), Cd(II) and Zn(II) by extracellular polymeric substances extracted from aerobic granular sludge: Efficiency of protein. J. Environ. Chem. Eng. 3, 1223–1232. doi:10.1016/j.jece.2015.04.009
Monier, M., Abdel-Latif, D.A., 2012. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions. J. Hazard. Mater. 209–210, 240–9. doi:10.1016/j.jhazmat.2012.01.015
Monsalvo, V.M., Mohedano, A.F., Rodriguez, J.J., 2011. Activated carbons from sewage sludge. Application to aqueous-phase adsorption of 4-chlorophenol. Desalination 277, 377–382. doi:10.1016/j.desal.2011.04.059
Naiya, T.K., Bhattacharya, A.K., Das, S.K., 2008. Removal of Cd(II) from aqueous solutions using clarified sludge. J. Colloid Interface Sci. 325, 48–56. doi:10.1016/j.jcis.2008.06.003
Nielsen, L., Zhang, P., Bandosz, T.J., 2015. Adsorption of carbamazepine on sludge/fish waste derived adsorbents: Effect of surface chemistry and texture. Chem. Eng. J. 267, 170–181. doi:10.1016/j.cej.2014.12.113
Phuengprasop, T., Sittiwong, J., Unob, F., 2011. Removal of heavy metal ions by iron oxide coated sewage sludge. J. Hazard. Mater. 186, 502–507. doi:10.1016/j.jhazmat.2010.11.065
Rao, R.A.K., Kashifuddin, M., 2016. Adsorption studies of Cd(II) on ball clay: Comparison with other natural clays. Arab. J. Chem. 9, S1233–S1241. doi:10.1016/j.arabjc.2012.01.010
Salmariza, S., 2012. Pemanfaatan Limbah Lumpur Proses Activated Sludge Industri Karet Remah Sebagai Adsorben. J. Ris. Ind. VI, 175–182.
Salmariza, S., Mawardi, M., Hariyani, R., Kasman, M., 2014. Pengembangan Adsorben dari Limbah Lumpur Industri Crumb Rubber Yang Diaktivasi dengan H3PO4 Untuk Menyerap Ion Cr(VI). J. Litbang Ind. 4, 67–77. doi:10.24960/jli.v4i2.647.67-77
Samolada, M.C., Zabaniotou, A.A., 2014. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Manag. doi:10.1016/j.wasman.2013.11.003
Sharma, A., Lee, B.K., 2014. Cd(II) removal and recovery enhancement by using acrylamide-titanium nanocomposite as an adsorbent. Appl. Surf. Sci. 313, 624–632. doi:10.1016/j.apsusc.2014.06.034
Siswoyo, E., Mihara, Y., Tanaka, S., 2014. Determination of key components and adsorption capacity of a low cost adsorbent based on sludge of drinking water treatment plant to adsorb cadmium ion in water. Appl. Clay Sci. 97–98, 146–152. doi:10.1016/j.clay.2014.05.024
Smith, K.M., Fowler, G.D., Pullket, S., Graham, N.J.D., 2009. Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Res. 43, 2569–2594.
Spellman, F., 2014. Handbook of water and wastewater treatment plant operations, third. ed. CRC Press, New York.
Sy, S., Harmiwati, Kurniawati, D., Aziz, H., Chaidir, Z., Zein, R., 2018. Removal of Zinc onto Several adsorbents derived from waste activated sludge of crumb rubber industry (CRI-WAS). Int. J. Adv. Sci. Eng. Inf. Technol. 8, 157–164. doi:10.18517/ijaseit.8.1.4084
Sy, S., Lestari, I., Kurniawati, D., Aziz, H., Chaidir, Z., Zein, R., 2016. Characterization of Waste Activated Sludge of Crumb Rubber Industry (CRI-WAS) as Adsorbent of Cd(II). Der Pharma Chem. 8, 228–235.
Velghe, I., Carleer, R., Yperman, J., Schreurs, S., D’Haen, J., 2012. Characterisation of adsorbents prepared by pyrolysis of sludge and sludge/disposal filter cake mix. Water Res. 46, 2783–2794. doi:10.1016/j.watres.2012.02.034
Wu, C., Song, M., Jin, B., Wu, Y., Huang, Y., 2013. Effect of biomass addition on the surface and adsorption characterization of carbon-based adsorbents from sewage sludge. J. Environ. Sci. (China) 25, 405–412. doi:10.1016/S1001-0742(12)60028-X
Yang, C., Wang, J., Lei, M., Xie, G., Zeng, G., Luo, S., 2010. Biosorption of zinc(II) from aqueous solution by dried activated sludge. J. Environ. Sci. 22, 675–680. doi:10.1016/S1001-0742(09)60162-5
Zaini, M.A.A., Zakaria, M., Mohd.-Setapar, S.H., Che-Yunus, M.A., 2013. Sludge-adsorbents from palm oil mill effluent for methylene blue removal. J. Environ. Chem. Eng. 1, 1091–1098. doi:10.1016/j.jece.2013.08.026
DOI: http://dx.doi.org/10.24960/jli.v8i2.4290.95-104
Refbacks
- There are currently no refbacks.
Our journal indexed by:
Copyright © Baristand Industri Padang, 2015. Powered By OJS
Theme design credited to MEV edited by JLI





This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License