Effects of Fe2+ and Fe3+ ratio impregnated onto local commercial activated carbon coconut shell powder on the dye removal efficiency

Izarul Machdar, Cut Faradillasari, Nurul Atika Khair, Teku Muhammad Asnawi, Alfiansyah Yulianur BC, Y Yunardi

Abstract


The present study reports the performance of magnetic activated carbon impregnated with Fe2+ and Fe3+ on the removal of dye from a simulated wastewater. The magnetic activated carbon (MAC) as a magnetic absorbent was prepared by co-precipitation method and followed by impregnation process. The activated carbon (AC) was supplied from a local commercial activated carbon coconut shell powder. The objective of this study was to investigate the effects of Fe2+ and Fe3+ on the quality product of MAC for dye (methylene blue) adsorption. The molar ratios of Fe2+ and Fe3+ used during the preparation of the MAC were 1:1; 1:2, and 2:1. The MAC products were characterized by using scanning electron microscope (SEM), energy dispersive X-ray (EDX), and Fourier transform infrared spectroscopy (FT-IR) analysis techniques. The results confirmed that the concentration of magnetic particles (Fe3O4) on the MAC surface increased following the impregnation process. However, this results lowering adsorption properties of the MAC adsorbents, which subsequently affected the dye removal performance. The ratio of Fe2+:Fe3+ on the MAC preparation did not significantly change the MAC absorbent on the dye removal efficiency. Additionally, MAC derived from local AC possess a prospect as a sustainable alternative for dye pollutant adsorbent.

Abstrak

Penelitian ini melaporkan kinerja karbon aktif bersifat magnet yang di impregnasi dengan Fe2+dan  Fe3+ dalam penyerapan zat warna dari air limbah buatan. Karbon aktif bersifat magnet (MAC) dibuat melalui metode co-presipitasi dan diikuti dengan proses impregnasi. Material karbon aktif (AC) dibuat dari tempurung kelapa yang diperoleh dari pasar lokal. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh ratio dari Fe2+ and Fe3+ terhadap kualitas produk MAC yang digunakan nantinya di dalam proses penyerapan zat warna (metilen biru). Rasio molar dari Fe2+ and Fe3+ yang digunakan di dalam penelitian ini untuk menghasilkan MAC adalah 1:1; 1:2, dan 2:1. Produk MAC yang dihasilkan dipelajari karakteristiknya melalui scanning electron microscope (SEM), energy dispersive X-ray (EDX), dan Fourier transform infrared spectroscopy (FT-IR). Dari hasil penelitian yang diperoleh dapat dikonfirmasi bahwa konsentrasi partikel-partikel magnet (Fe3O4) pada permukaan MAC meningkat setelah proses impregnasi. Walaupun demikian, hal ini menyebabkan turunnya kemampuan adsorbsi dari adsorben MAC. Perbandingan rasio Fe2+ and Fe3+ tidak secara nyata mempengaruhi efisiensi penyerapan zat warna. Adsorben MAC dari karbon aktif lokal memiliki potensi sebagai bahan alternatif ramah lingkungan untuk penyerap zat warna.


Keywords


activated carbon; magnetic activated carbon; coconut shell; dye pollutant; dye removal

Full Text:

PDF

References


Altıntıg, E., Altundag, H., Tuzen, M., Sarı, A., 2017. Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chem. Eng. Res. Des. 122, 151–163. doi:10.1016/j.cherd.2017.03.035

Chandra, T.C., Mirna, M.M., Sudaryanto, Y., Ismadji, S., 2007. Adsorption of basic dye onto activated carbon prepared from durian shell: Studies of adsorption equilibrium and kinetics. Chem. Eng. J. 127, 121–129. doi:10.1016/j.cej.2006.09.011

Faulconer, E.K., Reitzenstein, N.V.H. Von, Mazyck, D.W., 2012. Optimization of magnetic powdered activated carbon for aqueous Hg ( II ) removal and magnetic recovery. J. Hazard. Mater. 199–200, 9–14. doi:10.1016/j.jhazmat.2011.10.023

Ghosh, U., Luthy, R.G., Cornelissen, G., Werner, D., Menzie, C.A., 2011. In-situ sorbent amendments: a new direction in contaminated sediment management. Environ. Sci. Technol. 45, 1163–1168. doi:10.1021/es102694h

Hameed, K.S., Muthirulan, P., Sundaram, M.M., 2017. Adsorption of chromotrope dye onto activated carbons obtained from the seeds of various plants : Equilibrium and kinetics studies. Arab. J. Chem. 10, S2225–S2233. doi:10.1016/j.arabjc.2013.07.058

Han, Z., Sani, B., Mrozik, W., Obst, M., Beckingham, B., Karapanagioti, H.K., Werner, D., 2015. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Water Res. 70, 394–403. doi:10.1016/j.watres.2014.12.016

Indira, T.K., Lakshmi, P.K., 2010. Magnetic nanoparticles – A review. Int. J. Pharm. Sci. Nanotechnol 3, 1035–1042.

doi:10.3390/ijms140510383

Iqbal, M., Ashiq, M.., 2007. Adsorption of dyes from aqueous solutions on activated charcoal. J. Hazard. Mater. 139, 57–66.

doi:10.1016/j.jhazmat.2006.06.007

Kahani, S.A., Hamadanian, M., Vandadi, O., 2010. Deposition of magnetite nanoparticles in activated carbons and preparation of magnetic activated carbons. Nanotechnology and Its Applications, First Sharjah International Conference. American Institute of Physics 978-0-7354-0439-7/07. 183–188.

Kumar, P.S., Varjani, S.J., Suganya, S., 2018. Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon : Kinetic and isotherm modelling. Bioresour. Technol. 250, 716–722. doi:10.1016/j.biortech.2017.11.097

Li, X., Ni, C., Yao, C., Chen, Z., 2012. Development of attapulgite/Ce1-sZrxO2 nanocomposite as catalyst for the degradation of methylene blue. Appl. Catal. B Environ. 117–118.

doi:10.1016/j.apcatb.2012.01.008

Martínez, M., Miralles, N., Hidalgo, S., Fiol, N., Villaescusa, I., Poch, J., 2006. Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. J. Hazard. Mater. B 133, 203–122. doi:10.1016/j.jhazmat.2005.10.030

Meyer, U., 1981. Biodegradation of synthetic organic colorants. Microbial degradation of xenobiotic and recalcitrant compound, in: Leisinger, T., Cook, A.M., Hunter, R., Nuesch, J. (Ed.), FEMS Symposium 12. Academic Press, London, pp. 371–385.

Nam, H., Wang, S., Jeong, H., 2018. TMA and H2S gas removals using metal loaded on rice husk activated carbon for indoor air puri fi cation. Fuel 213, 186–194. doi:10.1016/j.fuel.2017.10.089

Oliveira, L.C.A., Rios, R.V.R.A., Fabris, D., Garg, V., Sapag, K., Lago, R.M., 2002. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon N. Y. 40, 2177–2183.

Orha, C., Pode, R., Manea, F., Lazau, C., Bandas, C., 2016. Titanium dioxide-modified activated carbon for advanced drinking water treatment. Process Saf. Environ. Prot. 108, 26–33.

doi:10.1016/j.psep.2016.07.013

Regti, A., Rachid, M., Stiriba, S., El, M., 2017. Potential use of activated carbon derived from Persea species under alkaline conditions for removing cationic dye from wastewaters. J. Assoc. Arab Univ. Basic Appl. Sci. 24, 10–18. doi:10.1016/j.jaubas.2017.01.003

Robinson, T., Mcmullan, G., Marchant, R., Nigam, P., 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247–255.

Samuelsson, S., Hedman, J.E., Elmquist, M., 2015. Capping in situ with activated carbon in Trondheim harbor (Norway) reduces bioaccumulation of PCBs and PAHs in marine sediment fauna. Mar. Environ. Res. 109, 103–112.

doi:10.1016/j.marenvres.2015.06.003

Sethia, G., Sayari, A., 2016. Activated carbon with optimum pore size distribution for hydrogen storage. Carbon N. Y. 99, 289–294.

doi:10.1016/j.carbon.2015.12.032

Shah, I., Adnan, R., Saime, W., Ngah, W., Mohamed, N., Taufiq-yap, Y.H., 2014. A new insight to the physical interpretation of activated carbon and iron doped carbon material: Sorption affinity towards organic dye. Bioresour. Technol. 160, 52–56.

doi:10.1016/j.biortech.2014.02.047

Vasilyeva, G.K., Strijakova, E.R., Nikolaeva, S.N., Lebedev, A.T., Shea, P.J., 2010. Dynamics of PCB removal and detoxification in historically contaminated soils amended with activated carbon. Environ. Pollut. 158, 770–777.

doi:10.1016/j.envpol.2009.10.010

Zhang, G., Qu, J., Liu, H., Cooper, A.T., Wu, R., 2007. CuFe2O4/activated carbon composite: A novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere 68, 1058–1066. doi:10.1016/j.chemosphere.2007.01.081

Zollinger, H., 1987. Colour chemistry-synthesis, properties of organic dyes and pigments. VCH Publishers, New York.




DOI: http://dx.doi.org/10.24960/jli.v8i1.3720.11-16

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Izarul Machdar, M.Eng


Our journal indexed by:




Copyright © Baristand Industri Padang, 2015. Powered By OJS

Theme design credited to MEV edited by JLI

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License