DEGRADASI POLIETILEN TEREFTALAT DENGAN RADIASI SINAR MATAHARI DAN METANOLISIS
Abstract
Telah dilakukan penelitian mengenai degradasi polietilen tereftalat (PET) menjadi dibenzil tereftalat. Degradasi polietilen tereftalat (PET) pada penelitian ini didahului dengan pemanasan sampel limbah botol PET di bawah sinar matahari kemudian dilanjutkan secara metanolisisis dengan katalis seng asetat. Degradasi dengan sinar matahari dilakukan dengan cara menjemur botol plastik di bawah sinar matahari selama 0, 30, dan 60 hari. Botol plastik kemudian dipotong-potong ukuran 2x2 mm. Degradasi kemudian dilanjutkan secara metanolisisis menggunakan pelarut benzil alkohol dan seng asetat sebagai katalis. Katalis seng asetat yang digunakan divariasikan sebanyak 0; 0,3; 0,6; dan 0,9 g. Degradasi metanolisisis dilakukan secara refluks pada suhu 145-150 °C. Produk hasil degradasi dikarakterisasi titik leleh dan gugus fungsinya dengan spektrum FTIR. Hasil penelitian menunjukkan bahwa pemanasan di bawah sinar matahari selama 0, 30 dan 60 hari tidak dapat mendepolimerisasi PET yang dibuktikan dengan data titik leleh dari masing-masing sampel limbah plastik PET yang masih sama dengan rentang titik leleh PET yaitu 250-260 °C. Depolimerisasi PET dengan radiasi sinar matahari yang dilanjutkan dengan metanolisis menghasilkan produk akhir berupa dibenzil tereftalat. Adapun variasi jumlah katalis seng asetat pada tahap metanolisis tidak mempengaruhi produk akhir yang terbentuk.
Keywords
Full Text:
PDFReferences
Al-Azzawi, F. (2015). Degradation Studies on Recycled Polyethylene Terephthalate. London Metropolitan University, 2–3.
Asefa, T., & Dubovoy, V. (2017). Ordered Mesoporous/Nanoporous Inorganic Materials via Self-Assembly. In Comprehensive Supramolecular Chemistry II (Second Edition, Vol. 9). Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.12649-6
Han, M. (2019). Depolymerization of PET Bottle via Methanolysis and Hydrolysis. In Recycling of Polyethylene Terephthalate Bottles. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811361-5.00005-5
Hofmann, M., Sundermeier, J., Alberti, C., & Enthaler, S. (2020).
Zinc(II) acetate Catalyzed Depolymerization of Poly(ethylene terephthalate). ChemistrySelect, 5(32), 10010–10014. https://doi.org/10.1002/slct.202002260
Khoonkari, M., Haghighi, A. H., Sefidbakht, Y., Shekoohi, K., & Ghaderian, A. (2015). Chemical Recycling of PET Wastes with Different Catalysts. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/124524
Mei, W., Chen, G., Bao, J., Song, M., Li, Y., & Luo, C. (2020). Interactions between microplastics and organic compounds in aquatic environments: A mini review. Science of the Total Environment, 736, 139472. https://doi.org/10.1016/j.scitotenv.2020.139472
Mou, F., Sun, Y., Jin, W., Zhang, Y., Wang, B., Liu, Z., Guo, L., Huang, J., & Liu, C. (2017). Reusable ionic liquid-catalyzed oxidative esterification of carboxylic acids with benzylic hydrocarbons via benzylic Csp3-H bond activation under metal-free conditions. RSC Advances, 7(37), 23041–23045. https://doi.org/10.1039/c7ra02788e
Nasution, R. S. (2015). Berbagai Cara Penanggulangan Limbah Plastik. Journal of Islamic Science and Technology, 1(1), 97–104. http://jurnal.ar-raniry.ac.id/index.php/elkawnie/article/view/522
Ovalle-Sánchez, A., Elizondo-Martínez, P., Péeez-Rodríguez, N., HernáNdez-Fernández, E., & Sánchez-Anguiano, M. G. (2017). Degradation of poly(ethyleneterephtalate) waste to obtain oligomers using a zinc complex as catalyst. Journal of the Chilean Chemical Society, 62(4), 3741–3745. https://doi.org/10.4067/s0717-97072017000403741
Pham, D. D., & Cho, J. (2021). Low-energy catalytic methanolysis of poly(ethyleneterephthalate). Green Chemistry, 23(1), 511–525. https://doi.org/10.1039/d0gc03536j
Purwaningrum, P. (2016). Upaya Mengurangi Timbulan Sampah Plastik Di Lingkungan. Indonesian Journal of Urban and Environmental Technology, 8(2), 141. https://doi.org/10.25105/urbanenvirotech.v8i2.1421
Rahmah, M., Muizz Fahimi, M., Afiqah Juhari, F., Mawardi Rahmat, A., Aishah, S., & Isa, M. (2016). FT-IR Characterisation and Strength Performance of Degradable Additive Incorporated Polyethylene Terephthelate (Pet) Bottle Upon Exposure To Different Environment. International Journal of Advances in Science Engineering and Technology, 4(June), 2321–9009.
Schyns, Z. O. G., & Shaver, M. P. (2021). Mechanical Recycling of Packaging Plastics: A Review. Macromolecular Rapid Communications, 42(3), 1–27. https://doi.org/10.1002/marc.202000415
Shojaei, B., Abtahi, M., & Najafi, M. (2020). Chemical recycling of PET: A stepping-stone toward sustainability. Polymers for Advanced Technologies, 31(12), 2912–2938. https://doi.org/10.1002/pat.5023
Thiounn, T., & Smith, R. C. (2020). Advances and approaches for chemical recycling of plastic waste. Journal of Polymer Science, 58(10), 1347–1364. https://doi.org/10.1002/pol.20190261
DOI: http://dx.doi.org/10.24817/jkk.v43i2.6824
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Mutista Hafshah
Jurnal Kimia dan Kemasan is indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.