Lela Mukmilah Yuningsih, Dikdik Mulyadi, Devia Indriani


In this study, the Polyaniline-Microcellulose composite was produced as a solid electrolyte. In the previous research, polyaniline-cellulose composite has been carried out. However, the electronegativity and electrical voltage are still below the conventional batteries. In order to increase its performance, a polyaniline-microcellulose composite was synthesized. The purpose of this research is to determine the effect of the Polyaniline-Microcellulose composite on its conductivity and voltage values. Microcellulose synthesis used a combination method of sulfuric acid hydrolysis with concentrations of  30%-64% and sonication. Polyaniline - Microcellulose composite was synthesized via polymerization of aniline using chemical oxidation and sonication. Microcellulose was characterized using particle size analyzer (PSA). Microcellulose and PANI-microcellulose composites were characterized using FTIR, SEM-EDX, and XRD. The conductivity values and electrical quantities of PANI-Microcellulose composite were measured using LCR-meter and Digital Multimeter, respectively. The diameter of the microcellulose particles were between 20 nm – 40,6 µm. Microcellulose and PANI-Microcellulose composites showed identical absorption bands, namely the stretching vibrations to-OH and CH (aliphatic), which were shown at wavelengths 3444.87 cm-1 and 2897.08 cm-1, two typical groups of cellulose. The typical groups of PANI are bending vibrations from N-H, stretching vibrations of C=C, C-N, and quinoid ring C=N at wavelengths 1566.20 cm-1, 1479.40 cm-1, 1300.02 cm-1, and 1141.86 cm-1. PANI-Microcellulose composite morphology showed that PANI had been dispersed on microcellulose and free from impurities. The degrees of crystallinity are 30.9343% for microcellulose and 14.6079% for PANI-microcellulose. The optimum conductivity value of PANI-microcellulose composite at a ratio of 1:10 is 0.036013 S/cm; the electrical voltage is 1.34 volts with an electric current of 83 mA.


Composite, conductivity, microcellulose, Polyaniline, sonication.

Full Text:



Abdullah, M., Virgus, Y., Nirmin, & Khairurrijal. (2008). Review: Sintesis Nanomaterial. Jurnal Nanosains & Nanoteknologi, 1(2), 3357.

Adriani, D. M., Sitorus, B., & Destiarti, L. (2013). Sintesis Material Konduktif Komposit Polianilin-Selulosa Dari Tanah Gambut. Jkk, 2 (3)(3), 127132.

Ioelovich, M. (2012). Optimal Conditions for Isolation of Nanocrystalline Cellulose Particles. Nanoscience and Nanotechnology, 2(2), 913.

Janaki, V., Vijayaraghavan, K., Oh, B. T., Lee, K. J., Muthuchelian, K., Ramasamy, A. K., & Kamala-Kannan, S. (2012). Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent. Carbohydrate Polymers, 90(4), 14371444.

Li, J., Qian, X., Wang, L., & An, X. (2010). XPS characterization and percolation behavior of polyaniline-coated conductive paper. BioResources, 5(2), 712726.

Mohadi, R., Saputra, A., Hidayati, N., & Lesbani, A. (2014). Studi Interaksi Ion Logam Mn2+ Dengan Selulosa Dari Serbuk Kayu. Jurnal Kimia, 8(1), 18.

Oke, I. (2010). Nanoscience in nature: cellulose nanocrystals. SURG Journal, 3(2), 7780.

Schyrr, B., Pasche, S., Voirin, G., Weder, C., Simon, Y. C., & Foster, E. J. (2014). Biosensors based on porous cellulose nanocrystal-poly(vinyl alcohol) scaffolds. ACS Applied Materials and Interfaces, 6(15), 1267412683.

Sitorus, B., Suendo, V., & Hidayat, F. (2011). Sintesis Polimer Konduktif sebagai Bahan Baku untuk Perangkat Penyimpan Energi Listrik. Jurnal ELKHA, 3(1), 4347.

Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74(5), 857867.

Vollath, D., & Szabó, D. V. (2004). Synthesis and Properties of Nanocomposites. Advanced Engineering Materials, 6(3), 117127.

William, R. A., Sitorus, B., & Malino, M. B. (2014). Sintesis Polianilin Pada Matriks Selulosa Sebagai Elektrolit Padat Pada Model Baterai Sederhana. Jkk, 3(4), 3238.

Yani, R., Purwaningsih, H., & Masud, Z. A. (2017). Mikroselulosa Nata de Coco sebagai Bahan Baku Hydroxypropyl Methylcellulose (HPMC). [Institut Pertanian Bogor].

Yuningsih, L. M., Mulyadi, D., & Sari, H. A. (2018). Effect of Swelling and Sonication Methods on Conductivity of Polyaniline-Cellulose from Corn Cob ( Zea mays L .). International Journal of Applied Chemistry, 14(4), 281292.

Yuningsih, L. M., Mulyadi, D., & Aripandi, I. (2017). Effect of Various Dopant HCL Concentration on Electrical Conductivity of Pani-Cellulose Composite with Cellulose Isolated from Reed Plant (Imperatacy lindrica (L.)). American Journal of Materials Science, 2017(3), 5963.

Zeni, M., & Favero, D. (2016). Preparation of Microcellulose (Mcc) and Nanocellulose (Ncc) from Eucalyptus Kraft Ssp Pulp. Polymer Science, 1(1), 15.

Zhao, H., Kwak, J. H., Conrad Zhang, Z., Brown, H. M., Arey, B. W., & Holladay, J. E. (2007). Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers, 68(2), 235241.



  • There are currently no refbacks.

Copyright (c) 2021 Devia Indriani, Lela Mukmilah Yuningsih

Jurnal Kimia dan Kemasan is indexed by:

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.