Isolasi Nanokristalin Selulosa Bakterial dari Jus Limbah Kulit Nanas: Optimasi Waktu Hidrolisis

Budiman Anwar, Bunbun Bundjali, I Made Arcana

Abstract


Nanokristalin selulosa (NCC) adalah bionanomaterial yang terbarukan, berkelanjutan, ramah lingkungan, dan potensi penggunaannya sangat luas. Salah satu metode untuk mengisolasi NCC dari selulosa adalah dengan hidrolisis menggunakan asam. Waktu hidrolisis adalah salah satu faktor yang sangat menentukan keberhasilan isolasi NCC disamping konsentrasi asam dan suhu hidrolisis. Penelitian ini difokuskan untuk memperoleh waktu hidrolisis optimum untuk isolasi NCC. Selulosa bakterial (BC), yang disintesis menggunakan media kultur jus limbah kulit nanas, digunakan sebagai sumber selulosa yang murah dan ramah lingkungan. Optimasi waku hidrolisis dikarakterisasi dengan stabilitas dispersi, %-hasil, dan diameter partikel rata-rata yang diukur menggunakan Particle Size Analyzer (PSA). Waktu optimum hidrolisis yang memberikan dispersi stabil dengan %-hasil terbanyak (62%) dan ukuran partikel terkecil (diameter rata-rata 41,6 nm) adalah 25 menit pada suhu dan konsentrasi asam tertentu. Analisis FTIR memperlihatkan spektrum NCC mirip dengan BC-asal dengan puncak-puncak serapan khas untuk selulosa. Sedikit pergeseran terjadi pada puncak sekitar 2900 cm−1 dan 1430 cm−1 yang disebabkan oleh adanya peningkatan derajat kristalinitas, hal ini menunjukkan pula bahwa BC telah berubah menjadi NCC. Pengamatan dengan Transmission Electron Microscopy (TEM) terhadap NCC memperlihatkan morfologi yang berbentuk jarum. 


Keywords


Nanokristalin selulosa; Selulosa bakterial; Limbah kulit nanas; Waktu hidrolisis

Full Text:

PDF

References


Angles, M.N. and A. Dufresne. 2000. Plasticized Starch/Tunicin Whiskers Nano- composite. 1. Structural Analysis. Macromolecules 33: 8344−8353

Anwar B, B. Bundjali, and I.M. Arcana. 2015. Characteristics of Bacterial Cellulose Produced by Gluconacetobacter xylinus from Local Pineapple Peel Waste Juice. Manuscript submitted for publication in Journal of Polymers and Environment Number JOOE-D-15- 00386.

Bendahou, A., Y. Habibi, H. Kaddami, and A. Dufresne. 2009. Physico-Chemical Characterization of Palm from Phoenix-L, Preparation of Cellulose Whiskers and Natural Rubber-Based Nanocomposites. Journal of Biobased Materials and Bioenergy 3: 81−90.

Bondenson, D., A. Mathew, and K. Oksman. 2006. Optimization of the Isolation of Nanocrystals from Microcrystalline Cellulose by Acid Hydrolysis. Cellulose 13: 171−180.

Brito B.S.L., F.V. Pereira, J.L Putaux, and B. Jean. 2012. Preparation, Morphology and Structure of Cellulose Nanocrystals from Bamboo Fibers. Cellulose 19: 1527−36.

Castro, C, R. Zuluaga, J.L. Putaux, G. Caro, I. Mondragon, and P. Ganan. 2011. Structural Characterization of Bacterial Cellulose Produced by Gluconacetobacter swingsii sp. from Colombian Agoindustrial Wastes. Carbohydrate Polymers 84: 96−102.

Chang, C.P., I.C. Wang, K.J. Hung, and Y.S. Perng. 2010. Preparation and Characterization of Nanocrystalline Cellulose by Acid Hydrolysis of Cotton Linter. Taiwan Journal for Science 25(3): 251−64.

Ciolacu, D., F. Ciolacu, V.I. Popa. 2011. Amorphous Cellulose-Structure and Characterization. Cellulose Chemistry and Technology 45(1-2): 13−21.

Fortunati, E., D. Puglia, M. Monti, L. Peponi, C. Santulli, J.M. Kenny, and L. Torre. 2013. Extraction of Cellulose Nanocrystals from Phormium tenax Fibres. Journal of Polymers and Environment 21; 319−328.

Garcia de Rodriguez N.L., W. Thielemans, and A. Dufresne. 2006. Sisal Cellulose Whiskers Reinforced Polyvinyl acetate Nanocomposites. Cellulose 13: 261−270.

George, J., A.S. Bawa, and Siddaramaiah. 2010. Synthesis and Characterization of Bacterial Cellulose Nanocrystals and their PVA Nanocomposites. Advanced Materials Research 123−125: 383−386.

Habibi, Y. and A. Dufresne. 2008. Highly Filled Bionanocomposites from Functionalized Nanocrystals. 9:1974−1980.

Helbert, W., J.Y. Cavaille, andA. Dufresne. 1996. Thermoplastic Nanocomposites Filled with Wheat Straw Cellulose Whiskers. Part I: Processing and Mechanical Behavior. Polymer Composite 17:604−11.

Hirai, A., O. Inui, F. Horii, and M. Tsuji. 2009. Phase Separation Behavior in Aqueous Suspensions of Bacterial Cellulose Nanocrystals Prepared by Sulfuric Acid Treatment. Langmuir 25(1):497−502.

Ioelovich, M. 2012. Optimal Conditions for Isolation of Nanocrystalline Cellulose Particles. Nanoscience and Nanotechnology 2(2):9−13.

Klemm, D., B. Heublein, H.P. Flink, and A. Bohn. 2005. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International 44: 3358−3393.

Maddahy, N.K., O. Ramezani, and H. Kermanian. 2012. Production of Nanocrystalline Cellulose Sugarcane Bagasse. Dalam: Proceedings of the 4th International Conference on Nanostructures (ICNS4), Kish Island, I. R. Iran: 87−89.

Moosavi-Nasab, M. dan A.R. Yousefi. 2010. Investigation of Physicochemical Properties of the Bacterial Cellulose Produced by Gluconacetobacter xylinus from Date Syrup. World Academy of Science, Engineering and Technology 44:1258−1263.

Nelson, M.L., and T. O’Connor. 1964. Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part II. A New Infrared Ratio for Estimation of Crystallinity in Cellulose I and II. Journal of Applied Polymer Science 8:1325−1341.

Sacui, I.A., R.C. Nieuwendaal, D.J. Burnett, S.J. Stranick, M. Jorfi, C. Weder, E.J. Foster, R.T. Olsson, and J.W. Gilman. 2014. Comparison of the Properties of Cellulose Nanocrystals and Cellulose Nanofibrils Isolated from Bacteria, Tunicate, and Wood Processed Using Acid, Enzymatic, and Oxidative Methods. ACS Applied Materials and Interfaces 6: 6127−6138.

Salmen, L., M. Akertholm, and B. Hinterstoisser. 2005. Two-Dimensional Fourier Transform Infrared Spectroscopy Applied to Cellulose and Paper. In: Dumitriu S, editor. Structural Diversity and Functional Versatility. 1st ed. New York: Marcel Dekker; p. 159−189.

Shaw, R. 2013. Dynamic Light Scattering Training- Achieving Reliable Nanoparticle Sizing. www.atascientific.com.au. (Accessed October 10, 2013).

Sheltami, R.M., I. Abdullah, I. Ahmad, A. Dufresne, and H. Kargarzadeh. 2012. Extraction of Cellulose Nanocrystals from Mengkuang Leaves (Pandanus tectorius). Carbohydrate Polymers 88:772−779.

Silverio, H.A., W.P.F. Neto, N.O. Dantas, and D. Pasquini. 2013. Extraction and Characterization of Cellulose Nanocrystals from Corncob for Application as Reinforcing Agent in Nanocomposites. Industrial Crops and Products 44:427−436.

Zaini, L.H., M. Jonoobi, P.M. Tahir, and S. Karimi. 2013. Isolation and Characterization of Cellulose Whiskers from Kenaf (Hibiskus cannabinus L.) Bast Fibers. Journal of Biomaterialsand Nanobiotechnology 4: 37−44.

Zhang, Y.,X.B. Lu, C. Gao, W.J. Lv, and J.M. Yao. 2012. Preparation and Characterization of Nano Crystalline Cellulose from Bamboo Fibers by Controlled Cellulose Hydrolysis. Journal of Fiber Bioengineering and informatics.5(3):263−271.




DOI: http://dx.doi.org/10.24817/jkk.v38i1.1973

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Budiman Anwar, Bunbun Bundjali, I Made Arcana

Jurnal Kimia dan Kemasan is indexed by:

    Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.