HIDROKARBON YANG MUDAH MENGUAP
MANFAAT DAN BAHAYANYA

oleh:

Rofienda *)

Abstract:
VOC's (Volatile Organic Compounds) are widely used as liquid fuels solvent or chemical intermediates because they can evaporate. But their emission contribute photochemical smog problem, which in turn cause the air toxicity and health problem. The control of these emission can be done with some technologies for gas pollutants, such as absorption, adsorption, condensation and incineration or by preventing the leaks of the VOC from its container, substitute another non VOC material.

Intisari:
Senyawa-senyawa hidrokarbon yang mudah menguap (VOC) banyak digunakan sebagai bahan bakar cair, pelarut, dapat juga sebagai pencuci di bengkel ataupun pabrik, karena sifatnya yang mudah menguap keudara. Namun emisi yang ditimbulkannya dapat menyebabkan smog fotokimia, yang dapat menyebabkan pencemaran udara dan gangguan kesehatan manusia. Pengontrolan emisi dapat dilakukan dengan teknologi penangguhlanan polutan gas-gas, seperti absorpsi, adsorpsi kondensasi dan insinerasi, mengganti dengan bahan non VOC atau dengan mencegah kebocoran dari kontainer.

PENDAHULUAN

Senyawa hidrokarbon yang mudah menguap dapat berupa cairan atau padatan yang mengandung karbon organik yang dapat menguap yaitu karbon yang berkaitan dengan karbon, hidrogen, nitrogen atau sulfur, tetapi bukan karbon karbonat seperti didalam CaCO₃, karbon karbida sebagai CaC₂, CO, CO₂. Senyawa organik yang mengandung 1 – 4 atom C berbentuk gas pada suhu kamar, sedangkan yang mengandung 5 atau lebih atom karbon berbentuk cair atau padat. Semakin tinggi jumlah atom karbon semakin cenderung untuk terdapat dalam bentuk padat. Dipilihnya hidrokarbon yang mudah menguap digunakan untuk berbagai kegiatan karena sifatnya yang mudah menguap tersebut. Sifat ini dapat memberikan keuntungan dan kerugian. Untuk mengurangi/menangguhkan kerugiannya dapat dilakukan dengan beberapa teknik pengontrolan ataupun penggantian penggunaan hidrokarbon mudah menguap sebagian dengan zat lain.

Hidrokarbon yang mudah menguap

Hidrokarbon atau senyawa organik yang sering menimbulkan masalah sebagai polusi udara adalah yang berbentuk gas pada suhu atmosfir normal atau senyawa organik yang bersifat sangat volatile pada suhu tersebut. Jumlah senyawa organik berupa senyawa hidrokarbon yang menyebabkan polusi udara cukup banyak. Analisis menggunakan kromatografi gas menunjukkan bahwa sekitar 56 senyawa hidrokarbon sering terdapat di udara, se-

*) Staf Peneliti Balai Besar Kimia dan Kemasan
pert benzena, toluen, asetilen dll.

1. Sifat Penguapan Hidrokarbon

Pada gambar (1) dibawah ini memperlihatkan tekanan uap sebagai fungsi dari temperatur untuk bermacam-macam senyawa. Garis air (water) 212 °F adalah titik didih normal, tekanannya 14,7 psi. Titik didih atmosfir normal adalah dimana tekanan uap = tekanan atmosfir dan dapat mengubah cairan menjadi uap dengan segera membentuk gelembung dan disebut mendidih. Pada temperatur ruang 68 °F tekanan uap dari air adalah 0,339 psi, pada temperatur ini air tidak men-didih, tetapi dapat menguap jika udara lingkungan tidak jenuh, contohnya kain basah akan kering pelan-pelan pada temperatur ini.

Gambar 1. Tekanan uap dari 29 senyawa sebagai fungsi dari temperatur dari GG Brown et.al, Unit Operations

Dari gambar 1 ini juga dapat dilihat senyawa organik etana, propana dan lain-lain, mempunyai tekanan uap diatas tekanan atmosfir pada temperatur ruang. Maka senyawa ini harus disimpan ditempat tertutup atau kontainer dengan tekanan, karena senyawa tersebut akan segera menguap pada temperatur ruang. Pada kontainer tertutup cairan mudah menguap akan membentuk fase keseimbangan dengan uap diatas. Jika ia cairan murni, tekanan dalam kontainer akan berubah menjadi tekanan uap itu sendiri dan uap akan mempunyai komposisi kimia yang sama dengan cairan tersebut, senyawa tersebut akan segera menguap pada temperatur ruang.
2. Sumber-sumber Hidrokarbon Yang Mudah Menguap 4,8

Adanya senyawa yang mudah menguap di udara dapat berasal dari sumber-sumber alami, hidrokarbon yang diproduksi oleh manusia dan peralatan yang digunakan di rumah, kantor dan sekolah. Dari tabel dibawah ini dapat dilihat persentase hidrokarbon yang di emisikan dari sumbernya.

<table>
<thead>
<tr>
<th>Sumber</th>
<th>% Emisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum</td>
<td></td>
</tr>
<tr>
<td>- Pengilangan minyak bumi</td>
<td>7,2</td>
</tr>
<tr>
<td>- Destilasi</td>
<td>0,4</td>
</tr>
<tr>
<td>- Gasolin</td>
<td>38,5</td>
</tr>
<tr>
<td>- Penguapan pada transfer dan penyimpanan</td>
<td>8,8</td>
</tr>
<tr>
<td>Batu Bara</td>
<td></td>
</tr>
<tr>
<td>- Pemanasan</td>
<td>2,3</td>
</tr>
<tr>
<td>- Penggunaan di industri</td>
<td>0,8</td>
</tr>
<tr>
<td>- Pembangkit listrik</td>
<td>0,2</td>
</tr>
<tr>
<td>Kayu</td>
<td></td>
</tr>
<tr>
<td>- Bahan bakar dan kebakaran hutan</td>
<td>2,2</td>
</tr>
<tr>
<td>- Pembakaran pada incinerator</td>
<td>28,3</td>
</tr>
<tr>
<td>- Penguapan dari pelarut di industri pengecatan</td>
<td>11,3</td>
</tr>
</tbody>
</table>

Sumber: Global and US Emissions of Pollutant Hydrocarbons.

Selain itu ada juga yang berasal dari:
- Hidrokarbon yang dipakai di rumah, kantor dan sekolah
- Perlengkapan kecantikan seperti hair spray, nail polish
- Perlengkapan rumah tangga seperti permadani dan pembersihannya, cat dan pelarutnya.
- Cairan pencuci kering (dry clean)
- Bahan-bahan bangunan dan permis rumah
- Perlengkapan kantor seperti cairan koreksi tinta foto copy, alat-alat menggambar, lem, marker permanent dll.

Manfaat penggunaan hidrokarbon 5,8

Hidrokarbon yang sudah menguap berbentuk cair terutama digunakan sebagai sumber energi kendaraan. Sebagai bahan bakar cair, seperti propan, gasolin, minyak diesel dan minyak pesawat. Gas alam juga merupakan senyawa hidrokarbon yang dipakai sebagai bahan bakar, tetapi sejauh ini proses penyimpanan da-
uapan cepat (pada cat yang dispraykan, cat kuku) digunakan pelarut dengan tekanan uap yang tinggi pada temperatur ruang, jika dibutuhkan penguapan pelan seperti pada cat yang dikuaskan, pelarut pembersih, dipilih pelarut dengan tekanan uap rendah pada temperatur ruang.

Bahaya yang dapat ditimbulkan akibat penggunaan hidrokarbon

Siklus fotolitik NO₂ yang normal di alam dapat dilihat pada gambar 2.

Gambar 2, Siklus fotolitik NO₂ yang normal
Pada gambar 3, dibawah ini dapat dilihat skema gangguan fotolitik NO\textsubscript{2} oleh hidrokarbon.

![Diagram Skema Gangguan Fotolitik NO\textsubscript{2} oleh Hidrokarbon](image)

Gambar 3. Skema gangguan fotolitik NO\textsubscript{2} oleh hidrokarbon.

Reaksi antara O dengan hidrokarbon merupakan produk intermediet yang sangat reaktif yang disebut hidrokarbon reaksi bebas (RO\textsubscript{2}) radikal bebas semacam ini dapat bereaksi lebih lanjut dengan berbagai komponen, termasuk NO, NO\textsubscript{2}, O\textsubscript{2}, O\textsubscript{3} dan hidrokarbon lainnya. Campuran produk-produk sebagai akibat gangguan hidrokarbon didalam siklus fotolitik NO\textsubscript{2} disebut Smog fotokimia yaitu terdiri dari kumpulan O\textsubscript{2}, CO, PAN dan komponen-komponen organic lainnya termasuk senyawa-senyawa aldehid, keton dan alkil nitrat. Dimana O\textsubscript{3} dapat menyebabkan iritisasi pada mata dan hidung dan juga akan bereaksi lagi dengan hidrokarbon, sedangkan dengan CO dapat darah manusia mulai mengganggu konsentrasi kerja. Konsentrasi 40% menyebabkan pusing dan pingsan, konsentrasi 80% menyebabkan kematian. Hasil penelitian dari Stoker dan Seager (1972) tentang toksisitas dari hidrokarbon:

- Benzen mulai konsentrasi 100 ppm menyebabkan lemas setelah 0.5 – 1 jam. Sedangkan konsentrasi 7500 ppm menyebabkan pingsan setelah 0.5 – 1 jam, konsentrasi 20.000 ppm menyebabkan kematian setelah 5 – 10 menit.
- Toluen mulai konsentrasi 200 ppm menyebabkan pusing, lemas dan berkunang-kunang setelah 8 jam, pada konsentrasi 600 ppm dapat menyebabkan kehilangan koordinasi, bola mata terbalik setelah 8 jam.
- Khusus untuk senyawa organic formaldehid hasil penelitian EPA menunjukkan bahwa formaldehid sebagai zat yang bersifat karsinogenik terhadap manusia.

BULLETIN PENELITIAN, Agustus 2003, Vol. XXV, No.2
Bahaya yang ditimbulkan senyawa hidrokarbon yang mudah menguap terhadap tanaman juga telah dilakukan penelitian:

- PAN sebagai turunan dari hidrokarbon akan menimbulkan kerusakan pada tanaman dengan memperlihatkan permukaan bawah daun berwarna keperakan dan kerusakan pada daun-daun muda. Hasil penelitian dengan memberikan PAN konsentrasi 0,02 – 0,05 ppm sudah cukup untuk menyebabkan kerusakan tanaman.
- Etilen \((C_2H_4)\) dengan konsentrasi ambient 1 ppm akan menghambat pertumbuhan tanaman, perubahan warna daun dan kematian bagian-bagian bunga.
- Asetilen dan propilen juga bersifat racun terhadap tanaman, tetapi konsentrasi yang dibutuhkan adalah 60-500 x etilen.

Usaha – usaha yang dapat dilakukan untuk mengurangi bahaya penggunaan hidrokarbon yang mudah menguap

- Untuk mengurangi gas hidrokarbon dalam ruangan, rumah dan kantor – kantor adalah dengan cara penambahan ventilasi ruangan. Jangan menyimpan kotak/ kaleng cat dan sejenisnya dalam keadaan terbuka dalam rumah dan kantor.
- Penggantian penggunaan hidrokarbon yang mudah menguap dengan air pada proses pencucian.

Seperti yang telah dilakukan oleh Acme Composites, suatu industri solvent, biasanya kehilangan 55 gallons metanol per minggu menguap, 55 gallons metilen klorid per bulan dan 3500 pounds CFC-113 per tahun. Sejak April 1993 penggantian proses pembersihan dengan pembersih water base, CFC-113 dan metilen klorid tidak dipakai lagi, penggunaan methanol berkurang 95 % dan penggunaan metil etil keton turun hingga 50 %, Perusahaan Acme Composites dapat menghemat lebih dari $ 41.000 per tahun.

- Penanggulangan/pencegahan kebocoran pada pengisian bahan bakar gasoline, baik pada depo pengisian maupun pada pengisian dari pompa-pompa bensin ke kendaraan, dengan memasang seal pada tiap pipa dan kontainer. Dari hasil penelitian The Californian Air Resources Board total yang diemisikan 0,62 gram / gallon gasoline.

- Pengontrolan polutan gas-gas hidrokarbon dari industri dapat juga dilakukan dengan cara:
 - Absorpsi, penyerapan dengan memakai media sesuai gas yang akan diserap, media dapat diletakkan pada alat tipe wet scrubbers.
 - Adsorpsi, metoda ini menggunakan beberapa jenis penyapar, seperti karbon aktif, alumina aktif, silica gel dan molekuler sieves, pemilihan penyaparnya berdasarkan pada jenis gas yang akan diserap.
 - Kondensasi, poses ini merupakan proses perubahan uap hidrokarbon menjadi cairan, dengan pengaturan temperatur dan tekanan. Umumnya dengan penurunan temperatur dan penambahan tekanan dari aliran gas.
 - Untuk gas-gas hidrokarbon yang merupakan buangan/sisa proses produksi dapat juga langsung dialirkan ke insinerator sehingga langsung dibakar menjadi CO\(_2\) dan H\(_2\)O.
KESIMPULAN

- Hidrokarbon yang mudah menguap banyak dipakai sebagai bahan bakar dan penggunaan industri solvent, industri cat dan industri kimia lainnya.

- Senyawa hidrokarbon yang mudah menguap dapat merusak lingkungan alam, manusia dan tanaman.

- Beberapa cara penanggulangan yang dapat dilakukan untuk mengurangi bahaya hidrokarbon adalah:
 - Dengan menambah ventilasi ruangan kerja/rumah.
 - Mengontrol dan mencegah kebocoran gas hidrokarbon.
 - Penanggulangan polutan gas hidrokarbon di industri dapat dilakukan dengan cara absorpsi, adsorpsi, kondensasi dan pembakaran di incinerator.
 - Mengganti penggunaan hidrokarbon dengan bahan lain yang tidak berbahaya.

DAFTAR PUSTAKA

4. Internet : “Health Through In Door Air Quality” info @ ags.com. 16-8-2002

----000000000000000----

BULLETIN PENELITIAN, Agustus 2003, Vol. XXV, No.2