PERANAN MIKROORGANISME DALAM BIOREMEDIASI TANAH YANG TERCEMAR LOGAM BERAT DARI LIMBAH INDUSTRI (Review)

Sri Pudji Rahayu

Abstrak

Tingkat pencemaran logam-logam berat dari industri ke tanah dan sungai di daerah industri sudah tidak terkendali. Untuk memulihikan tanah yang tercemar tersebut dapat dilakukan dengan berbagai cara, salah satunya dengan cara biologi yang disebut bioremediasi. Bioremediasi dilakukan dengan memanfaatkan mikroorganisme untuk rehabilitasi lingkungan karena dapat mendegradesi atau mengubah limbah bercacau menjadi tidak bercacau. Beberapa jenis mikroorganisme sangat berperan dalam bioremediasi, diantaranya adalah Pseudomonas, Bacillus, Moraxella, Acinetobactor, Burkholderia dan Alcaligenes. Beberapa faktor yang perlu diperhatikan dalam mendesain dan mengoperasikan proses bioremediasi yang melibatkan mikroorganisme adalah seleksi dan pemilihan mikroorganisme yang sesuai dengan treatment awalnya, waktu tinggal dan waktu kontak proses, proses pemisahan dan rekoven mikroorganisme, pembuangan mikroorganisme yang telah digunakan, dan perhitungan ekonomi dari proses bioremediasi.

Abstract

Heavy metals pollution level to soil and rivers of industrial area have become a serious problems. Several ways can be used to rehabilitate the polluted area, one of them is biological treatment which is called bioremediation. The bioremediation can be done by microorganism, because microorganism is able to degrade or remove hazardous waste. Several species of microorganism play important role on the bioremediation, for example species of Pseudomonas, Bacillus, Moraxella, Acinetobactor, Burkholderia dan Alcaligenes. To operate and design the bioremediation process should pay attention on many factors such as selection of microorganism used and its pre treatment, retention and contact time, microorganism recovery, the discharge of biomass and techno-economical calculation.

Keyword: bioremediation, heavy metals and microorganism

1. PENDAHULUAN

Pembangunan industri yang pesat selain bermanfaat bagi pembangunan ekonomi juga meningkatkan sisa pencemaran yang berupa limbah padat yang dapat menurunkan kualitas lingkungan. Penggunaan senyawa organik dan logam-logam berat secara intensif di industri telah banyak menimbulkan kontaminasi yang serius di tanah dan air. Tingkat pencemaran logam-logam berat dari industri ke tanah dan sungai di daerah industri sudah mencapai tahap yang mencemaskin seperti yang dilaporkan oleh Priyanto dan Suryati (2000)dalam Priyanto (2006) menyatakan bahwa kandungan 4 logam berat di Jakarta dan menonjol kegiatan industriannya tingkat pencemaran logam timah dan kromium di tanah mencapai 206-449 mg/kg dan 56-266 mg/kg, sementara di pedesaan yang jauh dari kegiatan industri hanya 24 mg/kg dan 1 mg/kg untuk timah dan kromium.

Limbah padat industri terutama yang mengandung B-3 harus dikelola sesuai aturan yang berlaku yaitu diolah dan ditimbun ditempat khusus penimbunan limbah, tetapi pada umumnya limbah masih banyak yang dibuang dan ditimbun di suatu lokasi biasanya sekitar pabrik sehingga dapat menimbulkan masalah serius terhadap lingkungan. Menurut Deputi VII Bidang Pembinan Sarana Teknis Pengelolaan Lingkungan Kementrian LH, hanya separuh dari
industri kimia yang peduli terhadap lingkungan terutama industri berskala besar, sedang industri berskala kecil umumnya masih membuang limbah dari pabriknya secara konvensional yaitu hanya ditimbun di suatu lokasi tertentu dari pabrik sehingga timbulah kasus-kasus pencemaran (Suara Pembaruan, 2003).

Limbah industri yang berupa padatan atau sludge (lumpur) hasil akhir dari pengolahan limbah cair (IPAL) tergolong limbah bahan berbahaya dan beracun (B3). Limbah tersebut dapat dikategorikan sebagai limbah B-3 sesuai PP 85 Tahun 1999 karena mengandung logam dan logam berat seperti Fe, Zn, Pb, Cr, Ni, Cu, Cd dan lain-lain yang sangat berbahaya bagi makhluk hidup dan lingkungan. Selain itu limbah padat industri juga dapat dikategorikan limbah B3 jika mengandung bahan kimia berbahaya maupun beracun.

Untuk menanggulangi masalah pencemaran akibat penimbunan tersebut maka perlu dilakukan suatu usaha pembersihan (clean up) atau biasa disebut remediiasi dan rehabilitasi dari bekas tempat penimbunan limbah yang mengandung B-3. Remediiasi dari tanah yang tercemar oleh logam berat dapat dilakukan dengan beberapa cara diantaranya dengan cara kimia, fisika dan biologi. Remediiasi secara biologi disebut dengan bioremediasi.

Bioremediasi limbah industri dapat dilakukan dengan bantuan mikroorganisme baik dari bakteri, cendawan dll. Di daerah tropis dengan kondisi kelembapan dan suhu tinggi sangat cocok sekali untuk perkembangan mikroorganisme maka bioremediasi berpotensi bagus untuk dikembangkan. Oleh karena itu perlu dicari jenis mikroba yang dapat berfungsi dengan baik dalam mendegradasi limbah industri.

2. BIOREMEDIASI

Dalam proses bioremediasi, reaksi-reaksi biologis yang utama adalah reaksi metabolisme sel. Senyawa polutan yang berbahaya dapat didegradasi oleh mikroorganisme baik didalam atau diluar sel dan reaksi ini adalah reaksi redoks. Reaksi ini dikatalisis oleh enzim-enzim mikrobial yang dihasilkan oleh mikroorganisme pengurai. Mula-mula mikroorganisme ini belum mempunyai kemampuan mendegradasi senyawa berbahaya yang belum dikenal sebelumnya karena belum memiliki enzim pendegradasi yang dibutuhkan, tetapi lambat laun mikroorganisme tersebut akan beradaptasi dan mengalami proses diagenesis yaitu perubahan secara kimia, biokimia dan fisika sehingga menghasilkan enzim-enzim pengurai. Degradiasi ini akan menghasilkan senyawa-senyawa yang tidak berbahaya.

Efektifitas mikroorganisme dapat dipengaruhi oleh kondisi lingkungan seperti substrat (senyawa yang didegradasi), suhu dan kelembaban sesuai kebutuhan mikroorganismenya. Disamping itu dalam proses degradasi juga dipengaruhi oleh ketersediaan oksigen. Proses metabolisme mikroorganisme dapat dibedakan menjadi 2 yaitu proses aerob dan anaerob. Pada metabolisme aerob, reaksi akan terjadi bila tersedia cukup oksigen yang berguna sebagai akseptor elektron. Reaksi ini juga bisa disebut respirasi. Pada proses anaerob, reaksi akan terjadi jika tidak terdapat oksigen, dan mikroorganisme akan menggunakan oksida
organik dan anorganik sebagai akceptor elektorn.

Teknik bioremediasi dapat diterapkan untuk memulihkan kondisi tanah yang tercemar itu. Bioremediasi sebenarnya dapat berlangsung secara alami tanpa campur tangan manusia, namun proses itu akan berjalan sangat lama. Agar proses tersebut berjalan lebih baik dan lebih cepat maka dibutuhkan campur tangan manusia dan kemajuan teknologi terutama dibidang biotek.

Secara umum bioremediasi dapat dilakukan dengan 2 metode yaitu:
1. Menstimulasi populasi mikroorganisme indigogenous yang disebut biostimulasi
2. Menambahkan populasi mikroorganisme eksogenous yang disebut bioaugmentasi

Bioaugmentasi lebih banyak dipilih karena zat pencemar (polutan) yang mengandung bahan beracun degradasinya membutuhkan waktu yang lama jika hanya mengandalkan mikroorganisme indigenous, sehingga diperlukan penambahan mikroorganisme eksogenous terutama yang tahan terhadap senyawa racun tersebut. Keberhasilan aplikasi bioaugmentasi dapat diukur dari peningkatan jumlah mikroorganisme yang berperan dalam proses degradasi karena dalam kenyataan tidak semua mikroorganisme yang ditambahkan dapat bertahan pada lingkungan baru yang mengandung senyawa beracun, sehingga akhirnya didapatkan strain mikroorganisme yang tahan terhadap komponen senyawa racun tertentu. Untuk mendapatkan strain yang tahan tersebut dilakukan dengan cara:
1. Pengkayaan Selektif
2. Penggunaan Produk Mikroorganisme Komersial
3. Rekayasa Genetika Mikroorganisme

Pengkayaan selektif merupakan metode yang umum digunakan, yaitu meningkatkan populasi mikroorganisme tertentu dari suatu inokulum (sumber mikroorganisme). Sumber mikroorganisme tersebut dapat berupa sludge, air tanah maupun tanah tempat dimana limbah tersebut berasal, biasa juga diperoleh dari fasilitas pengolahan limbah dan tanah yang tercemar.

3. STRATEGI BIOREMEDIASI

Bioremediasi dapat diaplikasikan pada masalah lingkungan yang bervariasi dan dapat dilakukan secara langsung pada lahan tercemar (in situ) atau dengan memindahkan atau mengeduk tanah untuk dilakukan pemulihan (land treatment atau landfarming) di suatu wilayah khusus, perlakuan composting, perlakuan fase padat dan dapat menggunakan bioreactor diatas tanah (ex situ).

Teknik bioremediasi in situ umumnya lebih disenangi karena dapat menghemat biaya, tidak perlu memindahkan dan mengeduk cemaran atau kontaminan, sehingga biasa dilakukan pada lahan yang mengalami pencemaran secara luas. Ada beberapa perlakuan dalam bioremediasi in situ yaitu (1) perlakuan dengan mengalirkan udara dan nutrien melalui sumur untuk memstimulasi pertumbuhan mikroorganisme asli disebut bioventing. (2) perlakuan biosparwing dengan menginjeksiikan udara dengan tekanan ke air untuk meningkatkan konsentrasi oksigen dalam air tanah dan meningkatkan kecepatan biodegradasi kontaminan oleh mikroorganisme. (3) bioaugmentasi yaitu menambahkan mikroorganisme baik asli (indigenous) maupun dari luar (exogenous) kedalam lahan yang tercemar.

Teknik bioremediasi ex situ dilakukan dengan menempatkan tanah tercemar yang sudah digali kedalam suatu sistem atau wadah dimana semua kondisi proses dapat diatur misalnya suplai oksigen, inokulum mikroba, suhu dan kelembaban. Teknik ex situ yang paling sederhana adalah landfarming yaitu mengeduk tanah yang tercemar dan memperlakukannya dengan mikroorganisme dan mengalirnya secara periodik sampai polutan terdegradasi. Perlakuan lain yaitu composting yang menggabungkan tanah yang tercemar dengan bahan organik tidak berbahaya seperti pupuk atau limbah pertanian. Penambahan bahan organik ini dapat memperkaya populasi mikroba tanah. Penggabungan teknik landfarming dan composting disebut biopiles. Sedangkan perlakuan fase padat yang menggunakan reactor untuk memanipulasi kondisi lingkungan untuk memaksimalkan proses degradasi senyawa beracun oleh mikroba disebut bioreactor. Perciptaan kondisi ideal dilakukan dengan menjaga kondisi pH, suhu tanah, dan "hydraulic conductivity" lapisan tanah.
Penambahan asam atau basa perlu dilakukan bila pH tanah jauh dari kondisi netral (5<pH>8).

4. MIKROORGANISME YANG DIGUNAKAN

Mikroorganisme meliputi virus, bakteri, jamur, dan protozoa dapat dikatakan sebagai makhluk tertia dengan diversitas terbanyak di planet bumi. Mikroba tersebut menempati 60 persen lebih biomassa dan telah hidup berevolusi paling tidak 3,8 miliar tahun. Mikroba memang dapat bertahan pada kondisi nyaman, ekstrem panas, dingin, berkonsentrasi garam tinggi, asam, basa, tekanan tinggi, bahkan di daerah-daerah yang mendekati kemustahilan untuk hidup bagi makhluk hidup lain seperti lingkungan dengan radioaktivitas tinggi.

Untuk mengatasi senyawa pencemar yang mengandung logam berat seperti pada limbah elektroplating, digunakan mikroorganisme yang dapat menggunakan logam berat sebagai nutrien atau hanya menjerab (imobilisasi) logam berat tersebut. Mikroorganisme yang digunakan adalah *Thiobacillus ferroxidans* dan *Bacillus subtilis*.

Thiobacillus ferroxidans adalah bakteri yang mendapatkan energi dari senyawa anorganik seperti besi sulfide dan menggunakan energinya untuk membentuk bahan-bahan yang berguna seperti asam fumarat dan besi sulfat. Sedang *Bacillus subtilis* mempunyai kemampuan mengikat beberapa logam berat seperti Pb, Cd, Cu, Ni, Zn, Al dan Fe dalam bentuk nitrat. Logam-logam tersebut dapat dilarutkan kembali setelah bakterinya dibuat lisis sehingga Logam tersebut dapat digunakan kembali oleh industri yang bersangkutan.

5. MEKANISME PENGHILANGAN LOGAM OLEH MIKROORGANISME

Secara alami di mana kondisi tanpa kendali, proses penghilangan ion logam berat oleh mikroorganisme umumnya terdiri dari dua mekanisme yang melibatkan proses "active uptake" dan "passive uptake". Pada saat ion logam berat tersebut pada permukaan sel, ion akan mengikat pada bagian permukaan sel berdasarkan kemampuan daya affinitas kima yang dimilikinya.

Menurut Sukhendrayatna (2001) "Active uptake" dikenal dengan istilah proses *biosorpsi*. Proses ini terjadi ketika ion logam berat mengikat dinding sel dengan dua cara yang berbeda,
pertama pertukaran ion di mana ion monovalen dan divalent seperti Na, Mg, dan Ca pada dinding sel digantikan oleh ion-ion logam berat; dan kedua adalah formasi kompleks antara ion-ion logam berat dengan grup (gugus) fungsional seperti carbonyl, amino, thiol, hydroxy, phosphate, dan hydroxy-carboxyl yang berada pada dinding sel.

Tabel 1. Perbandingan biosorpsi ion logam berat oleh berbagai jenis mikroorganisme.

<table>
<thead>
<tr>
<th>Mikroorganisme</th>
<th>Metode penyerapan</th>
<th>Logam Berat</th>
<th>Konsentras i Awal</th>
<th>% Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizomucor miehei (F)</td>
<td>Pasif</td>
<td>Cu(II)</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>Mucor musco (F)</td>
<td>Pasif</td>
<td>Cu(II)</td>
<td>100</td>
<td>86</td>
</tr>
<tr>
<td>Rhizopus stolonifer (F)</td>
<td>Pasif</td>
<td>Cu(II)</td>
<td>100</td>
<td>82</td>
</tr>
<tr>
<td>Aspergillus oryzae (F)</td>
<td>Pasif</td>
<td>Cu(II)</td>
<td>100</td>
<td>58</td>
</tr>
<tr>
<td>Penicillium chrysogenum (F)</td>
<td>Pasif</td>
<td>Cu(II)</td>
<td>100</td>
<td>18</td>
</tr>
<tr>
<td>Ecklonia radiata (A)</td>
<td>Pasif</td>
<td>Cu(II)</td>
<td>0,29</td>
<td>95</td>
</tr>
<tr>
<td>Phellinus badius (F)</td>
<td>Pasif</td>
<td>Cu(II)</td>
<td>0,29</td>
<td>43</td>
</tr>
<tr>
<td>Pinus radiata (F)</td>
<td>Pasif</td>
<td>Cu(II)</td>
<td>0,29</td>
<td>24</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae (Y)</td>
<td>Aktif</td>
<td>Cu(I)</td>
<td>0,29</td>
<td>17</td>
</tr>
<tr>
<td>Chlorella vulgaris</td>
<td>Pasif</td>
<td>Pb(II)</td>
<td>100,2</td>
<td>83</td>
</tr>
<tr>
<td>Ecklonia radiata (A)</td>
<td>Pasif</td>
<td>Pb(II)</td>
<td>0,82</td>
<td>100</td>
</tr>
<tr>
<td>Phellinus badius (F)</td>
<td>Pasif</td>
<td>Pb(II)</td>
<td>0,82</td>
<td>50</td>
</tr>
<tr>
<td>Pinus radiata (F)</td>
<td>Pasif</td>
<td>Pb(II)</td>
<td>0,82</td>
<td>21</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae (Y)</td>
<td>Aktif</td>
<td>Pb(I)</td>
<td>0,82</td>
<td>34</td>
</tr>
<tr>
<td>Chlorella vulgaris</td>
<td>Aktif</td>
<td>As(V)</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>Chlorella vulgaris (A)</td>
<td>Aktif</td>
<td>As(III)</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Citrobacter sp. (B)</td>
<td>Aktif</td>
<td>Cd(II)</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>Ecklonia radiata (A) Phellinus</td>
<td>Pasif</td>
<td>Cd(II)</td>
<td>0,48</td>
<td>90</td>
</tr>
<tr>
<td>badius (F)</td>
<td>Pasif</td>
<td>Cd(II)</td>
<td>0,48</td>
<td>33</td>
</tr>
<tr>
<td>Pinus radiata (F)</td>
<td>Pasif</td>
<td>Cd(II)</td>
<td>0,48</td>
<td>29</td>
</tr>
</tbody>
</table>

Keterangan: (A) algae, (B) bacterium, (F) fungus, (Y) yeast.
Sumber: Suhendrayatna (2001)

Aktif uptake dapat terjadi pada berbagai tipe sel hidup. Mekanisme ini secara simultan terjadi sejalan dengan konsumsi ion logam untuk pertumbuhan mikroorganisme atau/atau akumulasi intraselular ion logam tersebut. Logam berat dapat juga diendapkan pada proses metabolisme dan ekresi. Proses ini tergantung dari energi yang tersedia dan seperti parameter-parameter yang berbeda seperti pH, suhu, kekuatan ikatan ionik, cahaya dll. Disamping itu proses ini dapat dihambat oleh suhu yang rendah, tidak tersedianya sumber energi dan penghambat-penghambat metabolisme sel. Di sisi lain, biosorpsi logam berat dengan sel hidup ini terbatas dikarenakan oleh akumulasi ion yang menyebabkan racun terhadap mikroorganisme sehingga dapat menghambat pertumbuhan mikroorganisme. Mikroorganisme yang tahan terhadap efek racun dari ion logam akan dihasilakan berdasarkan prosedur seleksi yang ketat terhadap pemilihan jenis mikroorganisme yang tahan terhadap kehadiran ion logam berat (Suhendrayatna, 2001).
Keduanya mekanisme penyerasan di atas dapat berjalan disatukan. Nakajima et al dalam Suhendrayatna (2001) melaporkan penyerasan selektif ion logam hampir sama antara sel hidup dan sel mati dari Chlorella regularis, di mana jumlah total logam berat yang diabsorpsiakan oleh sel mati kira-kira dua kali lebih besar dibandingkan dengan yang diabsorpsiakan oleh sel hidupnya. Disamping itu protein dan polisakarida memegang peranan yang sangat penting dalam proses bioabsorpsi ion logam berat di mana terjadi ikatan kovalen termasuk juga dengan gugus amino dan group carbonil. Pengambilan ion logam berat oleh Chlorella regularis misalnya secara selektif karena adanya ikatan yang kuat antara pasangan ion logam berat dan komponen sel, khususnya protein. Pada saat alga tersebut dibakukan pada medium yang mengandung kadmium, protein yang kaya sistein disintesisiskan oleh sel alga Chlorella vulgaris, tetapi ketika alga dibakukan pada medium yang mengandung arsenik, protein seperti metallothionein tidak tersintesisakan. Tabel 1 menunjukkan bioabsorpsi ion logam berat oleh berbagai jenis mikroorganisme.

6. KONSEP DASAR PROSES BIOREMEDIASI

Untuk mendesain suatu proses pengolahan limbah yang melibatkan mikroorganisme dalam mengatasi permasalahan ion logam berat, metode sederhana adalah secara proses bioremoval. Mikroorganisme pilihan (seperti terlihat pada Tabel 1) dimasukkan, ditumbuhkan dan selanjutnya dikontakkan dengan bagian yang tercemar ion-ion logam berat. Proses pengontakkan dilakukan dalam jangka waktu tertentu yang ditujukan agar kumpulan mikroorganisme berinteraksi dengan ion-ion logam berat dan selanjutnya mikroorganisme ini dipisahkan dari limbah. Kemudian mikroorganisme yang terikat dengan ion logam berat dapat diregenerasi untuk digunakan kembali atau kemudian dibuang ke lingkungan. Beberapa variabel penting yang perlu diberikan dalam mendesain dan mengoperasikan proses bioremoval dalam melibatkan mikroorganisme, seperti dijelaskan berikut ini:

a. seleksi dan pemilihan mikroorganisme yang sesuai serta treatment awalnya,

b. waktu tinggal dan waktu kontak proses,

c. proses pemisahan dan rekoveri mikroorganisme,

d. pembuangan mikroorganisme yang telah digunakan, dan

e. pertimbangan ekonomi dari proses.

Seleksi dan pemilihan mikroorganisme yang sesuai serta proses treatment awal merupakan unsur yang penting dalam mendisain suatu proses bioremoval. Proses ini juga meliputi pemilihan strain yang sesuai, metode kulturisasi dan kondisi fisik mikroorganisme. Walaupun ada beratus-ratus jenis spesies mikroorganisme yang telah diidentifikasi, namun sangat sedikit diantaranya teridentifikasi sebagai mikroorganisme yang mempunyai daya tahan yang tinggi terhadap pengaruh tingkat kenaikan suatu ion logam berat.

Proses pemisahan dan penemuan kembali (recovery) merupakan proses pemisahan mikroorganisme dari air limbah setelah pengolahan serta berkenaan dengan proses.
pengikatan logam berat dari suatu mikroorganisme. Proses sentrifugasi dan filtrasi yang saat ini rutin dilakukan di laboratorium dinilai tidak praktis bila diterapkan pada proses industri, sehingga penerapan immobilisasi mikroorganisme yang dipacking pada suatu kolom dipandang sangat praktis untuk digunakan. Suatu metode alternatif juga dapat digunakan dalam mikroorganisme dalam immobilisasi sendiri sebagai biofilm pada suatu media yang mempunyai porositas yang besar seperti pasir, batuan, sponges dan lain-lain. Sistem immobilisasi sangat cocok untuk non-destructive recovery, dimana setelah logam berat dimasukkan, logam tersebut dapat dikeluarkan dengan sejumlah material padatan dan selanjutnya mudah tertarik ke luar bersama sebagian kecil cairan untuk proses rekoveri dan pembuangan. Idealnya, proses bioremoval yang melibatkan immobilisasi sel akan mudah didapatkan kembali dan digunakan kembali untuk pengikatan ion logam oleh mikroorganisme.

Karena proses biologis dapat memecahkan masalah penghilangan ion logam berat dari suatu limbah dan terjadi banyak masalah yang menyangkut dengan lahan dan lautan dalam pembuangan lumpur yang mengandung logam berat maka metode yang ramah lingkungan sangat diperlukan untuk dikembangkan. Penggunaan mikroorganisme memiliki beberapa kelebihan berkaitan dengan rekoveri dan buangan ikatan logam,karena 1. pada banyak kasus, logam yang berikan dapat dilepaskan dan mikroorganisme dapat digunakan kembali untuk beberapa siklus proses. 2. mikroorganisme yang berikan dengan logam berat dapat di reduksi dengan menggunakan sistem pengerengan.

Tentu saja, pada akhirnya pertimbangan ekonomis sangat penting untuk diperhatikan dalam mengevaluasi seluruh proses.

Menurut Vidale (2001) dan Wisnuprapto (1996) untuk optimalisasi proses bioremediasi membutuhkan hal-hal penting seperti:

1. Tersedianya mikroorganisme yang melaksanakan proses transformasi, yang mampu menghasilkan enzim untuk mendegradasi atau mendetoksifikasi bahan beracun yang diolah.
2. Sumber energi dan akseptor elektron karena mikroorganisme memeroleh energi dari reaksi-reaksi yang berlangsung.
3. Faktor lingkungan seperti tipe tanah, kelembaban yang cukup, pH dan suhu yang sesuai, oksigen dan nutrisi yang cukup untuk pertumbuhan mikroorganisme.

7. FAKTOR LINGKUNGAN

Faktor lingkungan yang mempengaruhi proses bioremediasi adalah :

A. Kebutuhan Nutrisi

B. Suhu
Suhu merupakan salah satu faktor yang sangat berpengaruh terhadap bioremediasi karena suhu dapat mempengaruhi perkembangan dan pertumbuhan mikroorganisme. Suhu optimum untuk perkembangan mikroorganisme adalah 30-40°C karena itu suhu tropis sangat mendukung perkembangan mikroorganisme. Aktivitas mikroorganisme menurun dengan menurunnya suhu.

C. Kelembaban
Kelembaban sangat berpengaruh dalam proses bioremediasi karena mikroorganisme sangat tergantung dengan kelembaban. Mikroorganisme memerlukan kelembaban yang cukup tinggi untuk pertumbuhannya.

D. pH
pH diketahui berperanan dalam perkembangan atau pertumbuhan mikroorganisme. Mikroorganisme memerlukan kondisi lingkungan tertentu seperti pH dan suhu tertentu untuk mendukung aktivitas mikroba dan reaksi-reaksi yang dikatalisisinya. pH optimum biosorpsi ion timbal (Pb)II, nickel(II) dan tembaga (Cu)II oleh Zoogloea ramigera adalah berkisar antara 4.0-4.5 sedangkan untuk besi(II) adalah 2.0. Hasil penelitian
terhadap biosorpsi timbul oleh alga laut *Eckloniara radiata* menunjukkan bahwa laju penyerapan (biosorpsi) naik sejalan dengan kenaikan pH hingga 5.0.

8. KEUNTUNGAN DAN KEKURANGAN BIOREMEDIASI

A. Keuntungan

- Bioremediasi adalah proses alami sehingga mudah diterima oleh publik sebagai cara untuk memulihkan lingkungan yang tercemar. Mikroba yang dapat menguraikan kontaminan dapat meningkatkan sejalan dengan meningkatnya kontaminan dan ketika kontaminan terurai maka populasi mikroba juga turun. Hasil bioremediasi adalah produk yang tidak berbahaya.
- Dapat digunakan untuk mendegradasi limbah berbahaya dan beracun menjadi tidak berbahaya.
- Dapat merusak dengan sempurna polutan yang berbahaya dan beracun.
- Dapat dilakukan langsung pada tanah yang tercemar (on site) sehingga tidak perlu transportasi.
- Teknologi bioremediasi lebih murah dari pada penggunaan teknologi lain untuk membersihkan lingkungan.

B. Kekurangan

- Aplikasi bioremediasi terbatas hanya untuk senyawa yang dapat terdegradasi oleh makhluk hidup terutama mikroorganisme. Tidak semua senyawa cocok untuk proses biodegradasi yang lengkap dan cepat.
- Dikawatirkan produk hasil biodegradasi lebih persisten atau lebih toksik daripada senyawa asalnya.
- Sulit untuk ekstrapolasi dari skala bench ke skala pilot.
- Penentuan diperlukan untuk mengembangkan teknologi bioremediasi yang sesuai untuk tanah dan lokasi yang tercemar campuran kontaminan, baik yang berbentuk padat, cair dan gas.
- Bioremediasi memerlukan waktu yang lebih lama dari pada perlakuan lain seperti pembakaran dan penimbunan.
- Peraturan yang belum jelas, berhubungan dengan penerimaan kriteria bersih hasil bioremediasi yang masih sulit didefinisikan.

9. KESIMPULAN

Teknik yang banyak digunakan dalam bioremediasi adalah bioaugmentasi yaitu dengan menambahkan populasi mikroorganisme dari luar (eksogenous). Hal tersebut dilakukan karena zat pencemar (polutan) yang mengandung bahan beracun degradasinya membutuhkan waktu yang lama jika hanya mengandalkan mikroorganisme *indigenous*.

Variabel penting yang perlu diperhatikan dalam mendesain dan mengoperasikan proses bioremoval dalam melibatkan mikroorganisme, seperti dijelaskan berikut ini:
- a. seleksi dan pemilihan mikroorganisme yang sesuai serta treatment awalnya,
- b. waktu tinggal dan waktu kontak proses,
- c. proses pemisahan dan rekoviri mikroorganisme,
- d. pembuahan mikroorganisme yang telah digunakan,
- e. pertimbangan ekonomis dari proses.

DAFTAR PUSTAKA

10. Suhendrayatna. 2001. Bioremoval Logam Berat Dengan Menggunakan Microorganisme:

