Reverse Osmosis membrane in the sea water desalination process

Abstract:
Through Reverse Osmose (RO) process sea water diffuses into clean water by high pressure treatment more than its osmotic pressure. The advantages of the application of RO membrane in the desalination system are its wide range of capacity as well as more efficient cost of construction and energy, especially compared with MSF system, whereas its disadvantages mainly a low purity of clean water (600 ppm as TDS) produced and the process is much depend on the temperature, chemical compound and microorganisms in the sea water.

Intisari:
Air laut melalui proses Reverse Osmosa (RO) akan berdifusi menghasilkan air tawar dengan pemberian tekanan lebih tinggi dari tekanan osmosennya. Beberapa keuntungan penggunaan membran RO dalam sistem desalinasi adalah rentang kapasitas yang luas serta biaya konstruksi dan energi lebih efisien, terutama bila dibandingkan dengan sistem penguapan Multi Stage Flash (MSF), sementara kelemahannya antara lain rendahnya kemurnian air tawar yang dihasilkan (600 ppm sebagai Total Dissolved Solid/TDS) dan prosesnya sangat tergantung pada suhu, senyawa kimia serta mikroorganisme yang ada didalam air laut.

PENDAHULUAN
Air merupakan kebutuhan yang sangat vital bagi kehidupan manusia. Peningkatan kegiatan pembangunan akan meningkatkan pula kebutuhan akan air untuk menunjang produksi. Disisi lain terdapat masalah peningkatan jumlah penduduk yang diikuti dengan peningkatan kebutuhan jumlah air. Dengan demikian persediaan sumber daya air menjadi hal yang strategis dalam pengelolaan lingkungan hidup dan pembangunan nasional yang berkelanjutan. Air pada umumnya mengandung kontaminan tertentu yang mengakibatkan air tersebut tidak dapat dimanfaatkan secara langsung untuk suatu keperluan. Tujuan dari pengolahan air adalah untuk mendapatkan air bersih dengan cara menghilangkan atau mengurangi kontaminan dalam air, agar sifat-sifatnya sebagai polutan hilang dan air tersebut dapat dimanfaatkan sesuai dengan keperluannya (2). Tingkat pengolahan air tergantung dari kondisi awal air serta persyaratan yang diinginkan. Sistem pengolahan konvensional untuk memisahkan kontaminan air antara lain dengan menggunakan proses koagulasi, flotasi, filtrasi maupun pengendapan (10). Sistem ini memerlukan waktu yang lama serta lahan yang luas disamping sisa bahan kimia yang digunakan untuk koagulasi serta lumpur yang dihasilkan,

*) Staf Peneliti Balai Besar Kimia dan Kemasan
akan menimbulkan problem baru. Penelitian dan pengembangan teknologi untuk mencapai kualitas air lebih baik, lebih murah, fasilitas lebih kecil dan pengoperasian lebih mudah sangat penting. Salah satu sistem untuk mengolah air yang mempunyai unjuk kerja tinggi yaitu Teknologi dengan menggunakan membran (2). Saat ini pemakaian membran telah meluas pada beberapa bidang meliputi industri logam, makanan, biokimia, kesehatan serta pengolahan air dan air limbah.

TEKNOLOGI MEMBRAN

Berdasarkan cara pemakaianunya, membran dapat digolongkan yaitu: (6,7).
- Membran Mikro Fitras (MF)
- Membran Ultra Fitras (UF)
- Membran Nano Fitras (NF)
- Membran Reverse Osmosa (RO)

Tabel 1 dan 2 menunjukkan beberapa jenis membran dan penggunannya yang didasarkan pada tekanan operasi, ukuran partikel dan bahan yang dipisahkan.

<table>
<thead>
<tr>
<th>Klasifikasi</th>
<th>Komponen</th>
<th>Komponen Larut</th>
<th>Komponen Suspensi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daerah</td>
<td>Ion</td>
<td>Molekul</td>
<td>Molekul Tinggi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Partikel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Partikel kasar</td>
</tr>
<tr>
<td>Ukuran Partikel (μm)</td>
<td>0,001</td>
<td>0,01</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Bahan Yang Dipisahkan
- Ion
- Garam Laut
- THM
- Virus
- Bakteri
- FM Dari THM
- Cryptosporidium
- Algae / Protozoa
- Lumpsar

Metoda Pemisahan
- Tanah Ist
- UF
- NF
- RO
- MTE
- Pengendapan
- Filtrasi

Sumber: Kawasaki, RO membrane technology and application 2003 (7).
Dari data Tabel 1, dapat diketahui bahwa pengolahan air secara konvensional (pengendapan dan filtrasi) hanya dapat memisahkan partikel dan partikel kasar saja, sedang ion, molekul dan molekul tinggi tidak dapat dipisahkan, serta bahan yang dapat dipisahkan juga terbatas.

yang dapat dipisahkan berupa garam terlarut, virus, bakteri, trihalometan, dan tanah liat. Membran Ultrafiltrasi ini digunakan dalam industri makanan, farmasi, pengolahan air, tenaga nuklir dan lain-lain. Tekanan operasi yang digunakan sebesar < 3 bar.

Tabel 2 : Jenis Membran Dan Tekanan Operasi Yang Digunakan

<table>
<thead>
<tr>
<th>Membran</th>
<th>Ukuran Partikel / BM Yang Ditolak Membran</th>
<th>Tekanan Operasi (Bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikro Filtrasi</td>
<td>> 0.01 μm</td>
<td>Suck Method > 0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pressure Method < 2</td>
</tr>
<tr>
<td>Ultra Filtrasi</td>
<td>1.000 - 300.000</td>
<td>Suck Method > 0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pressure Method < 3</td>
</tr>
<tr>
<td>Nano Filtrasi</td>
<td>Maksimum Beberapa Ratus</td>
<td>2 - 15</td>
</tr>
<tr>
<td>Reverse Osmosa</td>
<td>Beberapa Puluh</td>
<td>Desalinasi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air Laut 50 - 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air Payau 4 - 40</td>
</tr>
</tbody>
</table>

Sumber : Kawasaki, RO membrane technology and application, 2003 (7).

- **Membran Mikro Filtrasi**

Adalah membran yang dapat memisahkan komponen terlarut dan tersuspensi dengan ukuran 0.1 sampai 10μm. Bahan yang dapat dipisahkan berupa garam terlarut, virus, bakteri, protozoa, koloni basillus, trihalometan yang mudah menguap dan tanah liat. Membran Mikrofiltrasi ini digunakan dalam industri medis, farmasi, untuk membuat air steril, dalam makanan minuman untuk menghilangkan yeast, fungi dan kekeruhan. Tekanan operasi yang digunakan sebesar < 2 bar.

- **Membran Nano Filtrasi**

Adalah membran yang formula dasarnya mirip membran RO tetapi mekanisme operasinya mirip membran UF. Jadi membran NF itu merupakan gabungan antara membran RO dan UF. Membran Nanofiltrasi digunakan untuk memisahkan komponen terlarut dan tersuspensi dengan BM maksimum beberapa ratus. Bahan yang dapat dipisahkan berupa virus, trihalometan dan garam terlarut. Tekanan operasi yang digunakan sebesar 2-15 bar.

- **Membran Ultra Filtrasi**

Adalah membran yang dapat memisahkan komponen terlarut dan tersuspansi dengan ukuran 0.01 sampai 1μm atau ekivalen BM nya sebesar 1000 - 300.000. Bahan
garam. Membran RO dapat memisahkan komponen terlarut dengan ukuran 0,001 sampai 0,01 μm atau partikel - partikel yang memiliki Berat Molekul rendah atau puluhan. Jika air tawar dan air garam dipisahkan oleh membran semipermiabel, maka air tawar akan mendifusi membran dan mengencerkan larutan garam.

Peristiwa itu disebut peristiwa osmosa (Gambar 1 a) (1,4,5). Gerakan air berhenti jika diberikan perbedaan tekanan tertentu. Peristiwa ini disebut keseimbangan osmosa. Perbedaan tekanannya disebut tekanan osmosa air garam. Untuk air laut besarnya kira-kira 23 bar (2). Jika pada air garam diberi tekanan lebih tinggi dari tekanan osmosa, maka air dalam air garam didorong menuju air tawar melalui membran semi permeabel, peristiwa ini disebut reverse osmosa. Prinsip inilah yang digunakan untuk menghasilkan air tawar dari air garam dengan menjalankan operasi diatas secara terus menerus (2).

Keterangan Gambar:
1. = Larutan air garam
2. = Air tawar
3. = Tekanan Osmosa
4. = Membran semi Permiabel
5. = Tekanan operasi

Besarnya tekanan osmosa dari suatu larutan tergantung pada jenis larutan serta konsentrasinya. Berikut dapat dilihat nama larutan serta tekanan osmosanya (Tabel 3) (1,9). Dari tabel 3 dapat diketahui bahwa larutan NaCl (Garam) dengan konsentrasi 10000 mg/l dan suhu 25 °C mempunyai tekanan osmosa 11.4 bar. Air laut yang mengandung garam 35000 mg/l tekanan osmosanya lebih besar dari 11.4 bar. Untuk memisahkan garam dari air laut dengan konsentrasi tersebut diperlukan tekanan minimal 3 kali lipat tekanan osmosa larutan (6). Membran semi permeabel dirakit dalam suatu alat yang kompak, yang disebut modul reverse osmosa. Untuk desalinasi air laut, terutama menggunakan modul -

Gambar. 1: Peristiwa Osmosa dan Peristiwa Reverse Osmosa

BULLETIN PENELITIAN, Desember 2003, Vol. XXV No.3

41
Tabel 3: Tekanan Osmosa Larutan pada Konsentrasi 1.000 mg/l dan Suhu 25 °C

<table>
<thead>
<tr>
<th>No.</th>
<th>Larutan</th>
<th>Tekanan Osmosa (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>NaCl</td>
<td>11,4</td>
</tr>
<tr>
<td>2.</td>
<td>NaHCO₃</td>
<td>12,8</td>
</tr>
<tr>
<td>3.</td>
<td>Na₂SO₄</td>
<td>6</td>
</tr>
<tr>
<td>4.</td>
<td>MgSO₄</td>
<td>8,6</td>
</tr>
<tr>
<td>5.</td>
<td>MgCl₂</td>
<td>9,7</td>
</tr>
<tr>
<td>6.</td>
<td>CaCl₂</td>
<td>8,3</td>
</tr>
<tr>
<td>7.</td>
<td>Gula / sukrosa</td>
<td>1,05</td>
</tr>
<tr>
<td>8.</td>
<td>Dekstrin / dekstroza</td>
<td>2</td>
</tr>
</tbody>
</table>

Sumber: Taniguchi, Membrane separation, 1992

- Proses pemisahan dengan membran dapat dilakukan pada kondisi normal sehingga tidak merusak bahan yang akan dipisahkan.
- Untuk melakukan pemisahan tidak diperlukan kehadiran zat-zat tambahan untuk mengekstrak, mengadsorpsi. Oleh karena itu teknologi membran dapat dikenal sebagai teknologi bersih yang tidak menambahkan zat-zat lain yang sebenarnya malah lebih mengotori lingkungan.
- Tidak diperlukan banyak energi karena pemisahan tidak dilakukan berdasar kecepatan fase.
- Disain sederhana, tidak memerlukan ruang yang luas, tidak memerlukan banyak peralatan. Tambahan
- Mudah untuk dioperasikan.
- Efisiensi pemisahannya tinggi.

Disamping keunggulan-keunggulan yang telah diuraikan diatas, proses membran ini juga memiliki kelemahan antara lain:

a. Bahan membran sensitif terhadap suhu, pl l dan ketahanan mekanik.
b. Semakin tinggi jumlah air yang melewati membran seringkali berakibat menurunnya garam yang dipisahkan atau sebaliknya.
c. Unjuk kerja membran tergantung karena adanya kontaminan.

DEСALINASI AIR LAUT

Air laut adalah suatu larutan yang mengandung 95,5-96,5% air dan sisinya 4,5-3,5% berupa mineral terlarut atau garam garam. Desalinasi air laut adalah mengeluarkan air tawar dari air laut. Untuk mengeluarkan air tawar dari air laut dapat dilakukan dengan proses pe-
nguapan, elektrodialisa dan reverse osmose. (1,8,9) Proses penguapan untuk menghasilkan air tawar dari air laut sudah dilakukan sejak zaman dahulu kala. Proses ini memisahkan kandungan air dari air laut dengan menggunakan perubahan fase air. Jenis proses penguapan meliputi Multi Stage Flash (MSF), Multi Effect Evaporation (MEE), Multi Vapor Compression (MVC). Reverse osmosa dikembangkan untuk desalinasi air laut karena hemat energi. Sedang metode elektro dialisa dikembangkan untuk desalinasi air pasang. Elektrodialisa terdiri 2 tipe ion membran selektif. Satu dari tipe membran yang membiarkan lewatinya ion positif atau kation dan ion lainnya membiarkan lewatinya ion negatif atau anion. Jika aliran listrik diberikan pada sel elektrolit tersebut, membran kation akan membiarkan lewatinya ion Na (+) dan membran anion akan membiarkan lewatinya ion klorida (-) sehingga dihasilkan air tawar diantara membran tersebut. Jumlah aliran listrik yang diperlukan tergantung pada jumlah garam yang akan dihilangkan.

Tabel 4: Perbandingan karakteristik beberapa proses desalinasi air laut.

<table>
<thead>
<tr>
<th>Proses desalinasi</th>
<th>Multi Stage Flash (MSF)</th>
<th>Multi Effect Evaporation (MEE)</th>
<th>Multi Vapor Compression (MVC)</th>
<th>Reverse Osmose (RO)</th>
<th>Electro dialysis (ED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penggunaan</td>
<td>Kapasitas medium-besar</td>
<td>Kapasitas kecil-medium</td>
<td>Kapasitas kecil-medium</td>
<td>Kapasitas kecil-besar</td>
<td>Kurasitas kecil-medium untuk air sungai/air payau</td>
</tr>
<tr>
<td>Kemurnian air (sebagai TDS)</td>
<td><25 ppm</td>
<td><25 ppm</td>
<td><25 ppm</td>
<td>600 ppm</td>
<td>300 ppm</td>
</tr>
<tr>
<td>Karakteristik</td>
<td>Biaya konstruksi dan energi lebih baik dari MSF</td>
<td>Biaya konstruksi dan energi lebih baik dari MSF</td>
<td>Biaya konstruksi dan energi lebih baik dari MSF</td>
<td>Perlu memuaskan pada awal operasi</td>
<td>Perlu tenaga listrik untuk ionisasi garam dalam air. Melayani air untuk air laut yang mempunyai konentrasi garam tinggi.</td>
</tr>
</tbody>
</table>

Sumber: Anonymous, Desalination Technology, 1994
unggulan yaitu dapat digunakan untuk kapasitas kecil sampai besar dan biaya konstruksi serta energi lebih baik dari sistem MSF. Kelebihannya yaitu kemurnian airnya lebih rendah dibandingkan dengan proses yang lain (kira-kira 600 ppm) dan unjuk kerja memaran mudah terpengaruh oleh suhu, penyawa kimia dan mikroorganisme dari air laut sehingga perlu dilakukan perlakuan pendahuluan. Pada prinsipnya proses pengolahan air laut menjadi air bersih dengan menggunakan membran RO dilakukan melalui proses:

- Perlakuan pendahuluan dan
- Pemisahan garam

Perlakuan Pendahuluan

Tujuan perlakuan pendahuluan adalah menghilangkan komponen yang tersuspensi dan terlarut serta bahan kontaminan lainnya yang ada di dalam air laut. Hal ini disebabkan karena bahan tersebut akan mengurangi efisiensi fungsi membran. Air yang digunakan perlu diolah sedemikian sehingga aman untuk melewati membran. (11) Jenis perlakuan pendahuluan yang dilakukan tergantung pada asal air laut yang dipisahkan garamnya yaitu penyaringan, disinfeksi, koagulasi, filtrasi, pengaturan pH atau penambahan bahan penghambat penyebab terbentuknya kerak yang disebabkan adanya kalsium karbonat dan sulfat dan lain-lain. (4) Selanjutnya dilakukan filtrasi lagi untuk memisahkan partikel ukuran lebih besar dari 10μm menggunakan cartridge.

Pemisahan Garam

\[
\text{TDS air yang dihasilkan} = \frac{1}{\text{TDS air yang dilah}} \times 100 \%
\]

Disamping itu, persentase jumlah air bersih yang dihasilkan (recovery) dapat dihitung dengan rumus dibawah ini (4).

\[
\text{Recovery} = \frac{Q_p}{Q_f} \times 100 \%
\]

\[
Q_p : \text{aliran air yang dihasilkan (m}^3/\text{hari)}
\]
\[
Q_f : \text{aliran air yang dialir (m}^3/\text{hari)}
\]

Tabel 5. Contoh Penggunaan RO untuk menghasilkan air tawar dan air laut di beberapa negara

<table>
<thead>
<tr>
<th>No</th>
<th>Negara</th>
<th>Lokasi</th>
<th>Kapasitas m³/hari</th>
<th>Jumlah</th>
<th>Tahun</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trinidad</td>
<td>Trinidad</td>
<td>136000</td>
<td>8</td>
<td>2002</td>
</tr>
<tr>
<td>2</td>
<td>Saudi Arab</td>
<td>Yanbu</td>
<td>128000</td>
<td>15</td>
<td>1998</td>
</tr>
<tr>
<td>3</td>
<td>Saudi Arab</td>
<td>Al Jubail</td>
<td>91000</td>
<td>15</td>
<td>2000</td>
</tr>
<tr>
<td>4</td>
<td>Saudi Arab</td>
<td>Jeddah RO1</td>
<td>56800</td>
<td>10</td>
<td>1989</td>
</tr>
<tr>
<td>5</td>
<td>Saudi Arab</td>
<td>Jeddah RO2</td>
<td>56800</td>
<td>10</td>
<td>1994</td>
</tr>
<tr>
<td>6</td>
<td>Spanyol</td>
<td>Marbella</td>
<td>56400</td>
<td>10</td>
<td>1999</td>
</tr>
<tr>
<td>7</td>
<td>Malta</td>
<td>Penbroke</td>
<td>54000</td>
<td>10</td>
<td>1994</td>
</tr>
<tr>
<td>8</td>
<td>Bahrain</td>
<td>Aldur</td>
<td>45000</td>
<td>8</td>
<td>1989</td>
</tr>
<tr>
<td>9</td>
<td>Spanyol</td>
<td>Bi Mallorca</td>
<td>42000</td>
<td>6</td>
<td>1998</td>
</tr>
<tr>
<td>10</td>
<td>Jepang</td>
<td>Okinawa</td>
<td>40000</td>
<td>8</td>
<td>1997</td>
</tr>
<tr>
<td>11</td>
<td>Cyprus</td>
<td>Dhekella</td>
<td>40000</td>
<td>8</td>
<td>1998</td>
</tr>
</tbody>
</table>

Sumber: Kawasaki, RO Membrane Technology and Application, 2003

BULLETIN PENELITIAN, Desember 2003, Vol. XXV No.3
KESIMPULAN

1. Didalam proses desalinasi air laut Membran Reverse Osmosis berperan sebagai membran semipermeabel yang dapat memisahkan komponen terlarut dengan ukuran 0,001μm sampai dengan 0,01μm atau partikel-partikel yang memiliki berat molekul rendah atau puluhan saja.

2. Untuk mendapatkan air tawar dari air laut menggunakan membran RO, umumnya harus dilakukan perlakuan pendahuluan karena bahan kontaminan didalam air laut tersebut akan menyebabkan berkurangnya efisiensi dan merusakkan membran RO.

PUSTAKA

1. Anonymous, Various Process Of Seawater Desalination, Sasakura Engineering Co Ltd
2. Anonymous, 1994, Desalination Technology, Water Re-Use Promotion Center
3. Anonymous, 1995, New Advanced Water Treatment Technology And Applicability For Water Re-Use, Water Re-Use Promotion Center, Tokyo, Japan

---000000000000----