The Effect of Aging Time on Biosynthesis of Zirconia Nanoparticles by Nanocellulose Templates
Abstract
In this study, the biosynthesis of ZrO2 nanomaterials was carried out using nano cellulose template from the biomass of oil palm empty fruit bunches (Elaeis guineensis). The purpose of this study was to determine the effect of nanocellulose from oil palm empty fruit bunches as a template and aging time in the formation of ZrO2 nanoparticles. The method in this research for synthesis of ZrO2 nanoparticles is the template-precursor method. The biosynthesis of ZrO2 nanoparticles calcined at 600 °C produced a metastable tetragonal phase with a nanorod-like morphology with diameter <100 nm, length <200 nm and agglomeration of nanoparticles with an average particle size of 13 nm - 17 nm.
Keywords
Full Text:
PDFReferences
P. Gibot, L. Vidal, L. Laffont, and J. Mory, “Zirconia nanopowder synthesis via detonation of trinitrotoluene,” Ceram. Int., no. May, pp. 1–6, 2020, doi: 10.1016/j.ceramint.2020.07.182.
S. Khalili and H. M. Chenari, “Successful electrospinning fabrication of ZrO2 nanofibers: A detailed physical – chemical characterization study,” J. Alloys Compd., vol. 828, p. 154414, 2020, doi: 10.1016/j.jallcom.2020.154414.
R. Septawendar, B. S. Purwasasmita, and S. Sutardi, “Effect of the Hydrolysis Catalyst NH4OH on the Preparation of Calcia Stabilized Zirconia with Sugar as A Masking Agent at Low Temperatures,” J. Aust. Ceram. Soc., vol. 49, no. 1, 2013.
R. R. Astari and R. Septawendar, “Perkembangan Film Tipis Zirkonia: Sifat, Sintesis dan Aplikasi,” J. Keramik dan Gelas Indones., vol. 26, no. 2, 2017.
V. G. Deshmane and Y. G. Adewuyi, “Synthesis of thermally stable, high surface area, nanocrystalline mesoporous tetragonal zirconium dioxide (ZrO2): Effects of different process parameters,” Microporous Mesoporous Mater., vol. 148, no. 1, pp. 88–100, 2012, doi: 10.1016/j.micromeso.2011.07.012.
X. Liu et al., “Effect of NaOH on the preparation of two-dimensional flake-like zirconia nanostructures,” Chem. Phys. Lett., vol. 754, no. July, p. 137755, 2020, doi: 10.1016/j.cplett.2020.137755.
R. Vennila et al., “Biosynthesis of ZrO Nanoparticles and Its Natural Dye Sensitized Solar Cell Studies,” Mater. Today Proc., vol. 5, no. 2, pp. 8691–8698, 2018, doi: 10.1016/j.matpr.2017.12.295.
R. Septawendar et al., “Synthesis of one-dimensional ZrO2 nanomaterials from Zr(OH)4 precursors assisted by glycols through a facile precursor-templating method,” Mater. Res. Express, vol. 6, no. 6, 2019, doi: 10.1088/2053-1591/ab0d31.
F. Ordóñez, F. Chejne, E. Pabón, and K. Cacua, “Synthesis of ZrO2 nanoparticles and effect of surfactant on dispersion and stability,” Ceram. Int., vol. 46, no. 8, pp. 11970–11977, 2020, doi: 10.1016/j.ceramint.2020.01.236.
C. Yang et al., “Modified hydrothermal treatment route for high-yield preparation of nanosized ZrO2,” Ceram. Int., vol. 46, no. 12, pp. 19807–19814, 2020, doi: 10.1016/j.ceramint.2020.05.022.
X. Liu et al., “Preparation, characterization and growth mechanism of ZrO2 nanosheets,” Ceram. Int., vol. 46, no. 4, pp. 4864–4869, 2020, doi: 10.1016/j.ceramint.2019.10.222.
G. A. Carter, M. Rowles, M. I. Ogden, R. D. Hart, and C. E. Buckley, “Industrial precipitation of zirconyl chloride: The effect of pH and solution concentration on calcination of zirconia,” Mater. Chem. Phys., vol. 116, no. 2–3, pp. 607–614, 2009, doi: 10.1016/j.matchemphys.2009.05.014.
A. Saravanan et al., “Chemosphere A review on biosynthesis of metal nanoparticles and its environmental applications,” Chemosphere, vol. 264, p. 128580, 2021, doi: 10.1016/j.chemosphere.2020.128580.
C. Chinnasamy, P. Tamilselvam, B. Karthick, B. Sidharth, and M. Senthilnathan, “Green Synthesis, Characterization and Optimization Studies of Zinc Oxide Nano Particles Using Costusigneus Leaf Extract,” Mater. Today Proc., vol. 5, no. 2, pp. 6728–6735, 2018, doi: 10.1016/j.matpr.2017.11.331.
E. C. Nnadozie and P. A. Ajibade, “Green synthesis and characterization of magnetite (Fe3O4) nanoparticles using Chromolaena odorata root extract for smart nanocomposite,” Mater. Lett., vol. 263, p. 127145, 2020, doi: 10.1016/j.matlet.2019.127145.
A. Annu, C. Sivasankari, and U. Krupasankar, “Synthesis and characerization of Zro2 nanoparticle by leaf extract bioreduction process for its biological studies,” Mater. Today Proc., no. xxxx, 2020, doi: 10.1016/j.matpr.2020.02.975.
M. Kumaresan, K. Vijai Anand, K. Govindaraju, S. Tamilselvan, and V. Ganesh Kumar, “Seaweed Sargassum wightii mediated preparation of zirconia (ZrO 2 ) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria,” Microb. Pathog., vol. 124, no. May, pp. 311–315, 2018, doi: 10.1016/j.micpath.2018.08.060.
M. Isacfranklin et al., “Synthesis of highly active biocompatible ZrO2 nanorods using a bioextract,” Ceram. Int., vol. 46, no. 16, pp. 25915–25920, 2020, doi: 10.1016/j.ceramint.2020.07.076.
H. A. Abdel-Gawwad et al., “Biocarbonation: A novel method for synthesizing nano-zinc/zirconium carbonates and oxides,” Arab. J. Chem., 2020, doi: 10.1016/j.arabjc.2020.09.040.
A. F. V. da Silva et al., “Green synthesis of zirconia nanoparticles based on Euclea natalensis plant extract: Optimization of reaction conditions and evaluation of adsorptive properties,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 583, no. August, 2019, doi: 10.1016/j.colsurfa.2019.123915.
Z. A. Z. Azrina, M. D. H. Beg, M. Y. Rosli, R. Ramli, N. Junadi, and A. K. M. M. Alam, “Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis,” Carbohydr. Polym., vol. 162, pp. 115–120, 2017, doi: 10.1016/j.carbpol.2017.01.035.
Y. W. Chen, H. V. Lee, and S. B. Abd Hamid, “Facile production of nanostructured cellulose from Elaeis guineensis empty fruit bunch via one pot oxidative-hydrolysis isolation approach,” Carbohydr. Polym., vol. 157, pp. 1511–1524, 2017, doi: 10.1016/j.carbpol.2016.11.030.
A. A. Oun and J. W. Rhim, “Isolation of oxidized nanocellulose from rice straw using the ammonium persulfate method,” Cellulose, vol. 25, no. 4, pp. 2143–2149, 2018, doi: 10.1007/s10570-018-1730-6.
F. N. Maluin, M. Z. Hussein, and A. S. Idris, “An overview of the oil palm industry: Challenges and some emerging opportunities for nanotechnology development,” Agronomy, vol. 10, no. 3, 2020, doi: 10.3390/agronomy10030356.
O. Y. Kurapova and V. G. Konakov, “Phase evolution in zirconia based systems,” Rev. Adv. Mater. Sci., vol. 36, no. 2, pp. 177–190, 2014.
B. Boury and S. Plumejeau, “Metal oxides and polysaccharides: An efficient hybrid association for materials chemistry,” Green Chem., vol. 17, no. 1, pp. 72–88, 2015, doi: 10.1039/c4gc00957f.
A. Rylski and K. Siczek, “lubricants The E ff ect of Addition of Nanoparticles , Especially,” pp. 1–25, 2020.
O. Vasylkiv and Y. Sakka, “Synthesis and Colloidal Processing of Zirconia Nanopowder,” J. Am. Ceram. Soc., vol. 84, no. 11, pp. 2489–2494, 2001, doi: 10.1111/j.1151-2916.2001.tb01041.x.
DOI: http://dx.doi.org/10.32537/jkgi.v30i2.7409
Refbacks
- There are currently no refbacks.
JKGI Google Scholar Link

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial-BerbagiSerupa 4.0 Internasional.