Studi Sifat Elektronik Lapisan Nano Tunggal Sic 3c Dengan Metode Perhitungan Prinsip Pertama

Muhammad Syaifun Nizar, Ayu Ratnasari

Abstract


Perkembangan teknologi saat ini membutuhkan semikonduktor dengan performa yang tinggi dan mengarah kepada fabrikasi transistor dengan ukuran proses node dibawah 14 nm. SiC 3C mempunyai potensi untuk dijadikan semikonduktor menggantikan semikonduktor berbasis silikon karena memiliki sifat tahan temperatur tinggi dan memikliki celah pita energi yang lebar. Sifat listrik bahan pada skala nano masih masih harus banyak penelitian yang perlu dilakukan supaya bisa dipakai sebagai bahan semikonduktor. Dengan menggunakan prinsip pertama, sifat listrik suatu bahan pada ukuran skala nano dapat diprediksi dengan simulasi komputasi, sifat elektronik lapisan tunggal nano SiC 3C dihitung density of state dan struktur pita energi. Hasil komputasi SiC 3C lapisan nano tunggal dengan ukuran 1,3 x 1,3 nm ukuran sel kristal 3x3x1 didapatkan celah pita energi sebesar -1.7 eV mirip dengan semikonduktor tipe p dengan pita konduksi minimum berada 8 eV diatas pita valensi.

Keywords


SiC 3C, lapisan nano tunggal, semikonduktor, prinsip pertama, density of states, struktur pita energi

Full Text:

PDF

References


de Samber, M., Power Devices, 40(3),703–721. https://doi.org/10.1002/9783527623051.ch37). (2008).

Vignette, M., 14nm FDSOI Technology for High Speed and Energy Efficient Applications, 14–15. Retrieved from https://www.politesi.polimi.it/handle/10589/84805, (2013).

Schroder, D. K., & Babcock, J. A., Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing. Journal of Applied Physics, 94(1), 1–18. https://doi.org/10.1063/1.1567461 (2003).

Ferry, D. K., High-field transport in wide-band-gap semiconductors. Physical Review B, 12(6), 2361–2369. https://doi.org/10.1103/PhysRevB.12.2361, (1975).

Search, H., Journals, C., Contact, A., Iopscience, M., Address, I. P., Podlivaev, A. M., … Manuscript, A., d M us pt, 0–28. https://doi.org/10.1088/1361-665X/aa8886, (2016)

Wen, Z., Zhang, F., Shen, Z., Tian, L., Yan, G., Liu, X., … Zeng, Y., A novel silicon carbide accumulation channel injection enhanced gate transistor with buried barrier under shielding region. IEEE elektron Device Letters, 38(7), 941–944. https://doi.org/10.1109/LED.2017.2709322, (2017).

Hutter, J; Iannuzzi, M; Schiffmann, F; VandeVondele, J. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 4 (1), 15-25, CP2K: atomistic simulations of condensed matter systems. http://dx.doi.org/10.1002/wcms.1159), (2014).

S. Goedecker, M. Teter, and J. Hutter, Separable dual-space Gaussian pseudopotentials, Phys. Rev. B 54, 1703-1710, (1996).

C. Hartwigsen, S. Goedecker, and J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Phys. Rev. B 58, 3641-3662, (1998).

M. Krack, Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals, Theor. Chem. Acc. 114, 145-152, (2005).

Monkhorst, Hendrik J., and James D. Pack., Physical Review B 13.12: 5188-5192.), (1976).

Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, I. Tanaka, Band structure diagram paths based on crystallography, Comp. Mat. Sci. 128, 140, DOI: 10.1016/j.commatsci.2016.10.015 (the "HPKOT" paper; arXiv version: arXiv:1602.06402), (2017).

Humphrey, W., Dalke, A., & Schulten, K., {VMD} -- {V}isual {M}olecular {D}ynamics. Journal of Molecular Graphics, 14, 33–38, (1996).

Neamen, Donald A., Semiconductor Physics and Devices: Basic Principles (3rd ed.). McGraw-Hill Higher Education. ISBN 0-07-232107-5), (2003).

Wenzien, B., Kackell, P., & Bechstedt, F., Quasiparticle band structure of silikon carbide polytypes. Physical Review B, 52(15), 10897–10905. https://doi.org/10.1107/S0108270192000222), (1995).

Zhang, J.-M., Zheng, F.-L., Zhang, Y., & Ji, V., First-principles study on electronic properties of SiC nanoribbon. Journal of Materials Science, 45(12), 3259–3265. https://doi.org/10.1007/s10853-010-4335-5), (2010).

Nakagomi, S., Hiratsuka, K., Kakuda, Y., & Yoshihiro, K., Beta-Gallium Oxide/SiC Heterojunction Diodes with High Rectification Ratios. ECS Journal of Solid State Science and Technology, 6(2), Q3030–Q3035. https://doi.org/10.1149/2.0061702jss, (2017).

Aubry, R., Jacquet, J. C., Oualli, M., Patard, O., Piotrowicz, S., Chartier, E., … Delage, S. L., ICP-CVD SiN Passivation for High-Power RF InAlGaN/GaN/SiC HEMT. IEEE elektron Device Letters, 37(5), 629–632. https://doi.org/10.1109/LED.2016.2540164, (2016).

Matus, L. G., Powell, J. A., Petit, J. B., & Park, B., Development of Silicon Carbide Semiconductor Devices for High Temperature Applications, 0–9. (1991).




DOI: http://dx.doi.org/10.32537/jkgi.v26i2.4122

Refbacks

  • There are currently no refbacks.



JKGI Google Scholar Link



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial-BerbagiSerupa 4.0 Internasional.