Perkembangan Film Tipis Zirkonia: Sifat, Sintesis dan Aplikasi

Ratih Resti Astari, Rifki Septawendar

Abstract


Lapisan film tipis zirkonia merupakan bahan yang memiliki sifat dan karakteristik mekanis dan fisis yang sangat baik, serta sifat listrik dan kimia yang baik seperti kekerasan yang tinggi, konduktivitas ionik yang tinggi, indeks bias dan nilai band-gap yang tinggi, sifat absorpsi yang rendah dan sifat adhesi yang baik terhadap substrat, stabilitas termal yang tinggi, ketahanan korosi yang baik, serta bioaktiv dan biokompatibilitas. Oleh karena itu, lapisan film tipis zirkonia memiliki prospek penggunaan yang sangat potensial untuk keramik, seperti konduktor ion oksigen dan sensor oksigen, sebagai lapisan pembatas termal, untuk lapisan penyangga dalam perangkat superkonduktor, laser, bidang katalis, sebagai bahan dielektrik, dan untuk penggunaan di bidang biomedis seperti untuk implan dalam tubuh manusia. Makalah ini mengulas sifat-sifat penting lapisan film tipis zirkonia termasuk di dalamnya sintesis dan penggunaannya.

Keywords


zirkonia, lapisan film tipis, sifat fisis dan mekanis, sifat listrik, sifat optik, dan sifat kimia

Full Text:

PDF

References


N.Q. Minh. Ceramic Fuel Cells. J Am. Ceram. Soc. 76 [3] 563-588 (1993).

P. Li and J.T.S. Irvine, Fabrication of Anode-Supported Zirconia Thin Film Electrolyte Based Core–Shell Particle Structure for Intermediate Temperature Solid Oxide Fuel Cells, Progress in Natural Science: Materials International, 23 [3] 302–307 (2013). http://dx.doi.org/10.1016/j.pnsc.2013.05.004

A. J. B. Dutra, R. J. F. da Silva, and A. C. Afonso. Water and Sulfuric Acid Leaching of a Brazilian Zircon Concentrate Processed by Alkali Fusion. http://www.arber.com.tr/imps2012.org/proceedingsebook/Abstract/absfilAbstractSubmissionFullContent170.pdf. (2011). Diakses Oktober 2012.

S. Shukla, S. Seal, R. Vij and S. Bandyopadhyay, Effect of HPC and Water Concentration on the Evolution of Size, Aggregation and Crystallization of Sol-Gel Nano Zirconia, J. Nanoparticle Res., 4, 553–559 (2002).

A.M. Amer. Kinetics of Alkali Pressure Leaching of Mechanically Modified Zircon Concentrate. Physicochemical Problems of Mineral Processing, 40, 61-68 (2006).

S. Roy, “Nanocrystalline Undoped Tetragonal and Cubic Zirconia Synthesized Using Poly-Acrylamide as Gel and Matrix”, J Sol-Gel Sci Technol, 44, 227–233 (2007).

A.K. Bandyopadhyay. Nano Materials. New Age International, New Delhi, India, 2008.

K.C. Patil, M.S. Hedge, T. Rattan, amd S.T. Aruna, Chemistry of Nanocrystalline Oxide Materials, Combustion Synthesis, Properties and Applications, World Scientific, New Jersey, 2008.

A. A. Reka, B. Pavlovski, and B. Cekova, Special Ceramics Based on Partially Stabilized Zirconium Dioxide, Original scientific paper, UDC 666.3/.7:666.195:537.531.7, http://www.academia.edu/4946213/Special_Ceramics_Based_On_Partially_Stabilized_Zirconium_Dioxide, Diunduh Tanggal 9 Maret 2014.

R. Septawendar, B. S. Purwasasmita, and S. Sutardi, “Effect of the Hydrolysis Catalyst NH4OH on the Preparation of Calcia Stabilized Zirconia with Sugar as A Masking Agent at Low Temperatures”, Journal of the Australian Ceramic Society, 49 [1] 101-108 (2013).

V. N. Cancea, R. Birjega, V. Ion, M. Filipescu, and M. Dinescu. Analysis of Zirconia Thin Films Grown by Pulsed Laser Deposition. Physics AUC. 22 50-62 (2012).

S. Nath, N. Sinha, and B. Basu. Microstructure, Mechanical and Tribological Properties of Microwave Sintered Calcia-Doped Zirconia for Biomedical Applications. Ceramics International, 34, 1509–1520 (2008).

L. Li, P. Zhang, J. Liang, and S.M. Guo, Phase Transformation and Morphological Evolution of Electrospun Zirconia Nanofibers During Thermal Annealing, Ceramics International, 36, 589–594 (2010).

R. Septawendar, B. S. Purwasasmita, dan Suhanda, “Penyiapan Nanopartikel Zirkonia Terstabilkan Magnesia (Mg-PSZ) pada Suhu Kalsinasi Rendah dengan Metode Gel Koloidal”, Jurnal Keramik dan Gelas Indonesia, 21 [1] 44-59 (2012).

V. Thakare, Progress in Synthesis and Applications of Zirconia, International Journal of Engineering Research and Development, 5 [1] 25-28 (2012), e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

A. Afzal. Implantable Zirconia Bioceramics for Bone Repair and Replacement: A Chronological Review, Mater. Express, 4 [1] 1-12 (2014). doi:10.1166/mex.2014.1148

Y. Li, M. Liu, J. Gong, Y. Chen, Z. Tang, and Z. Zhang. Grain-Boundary Effect In Zirconia Stabilized with Yttria and Calcia by Electrical Measurements. Materials Science and Engineering, B103 108-114 (2003).

P. Duwez, F. Odell, and F. H. Brown, Jr. “Stabilization of Zirconia with Calcia and Magnesia”, J. Am. Ceram. Soc., 35 [5] 107-113 (1952).

Z. Li, W. E. Lee, and S. Zhang, Low-temperature Synthesis of CaZrO3 Powder from Molten Salts”, J. Am. Ceram. Soc., 90 [2] 364–368 (2007).

L. P. Borilo, L. N. Spivakova. Synthesis and Characterization of ZrO2 Thin Films. American Journal of Materials Science. 2 [4] (2012) 119-124 DOI: 10.5923/j.materials.20120204.04

A. Carrado, H. Pelletier and T. Roland. Nanocrystalline Thin Ceramic Films Synthesised by Pulsed Laser Deposition and Magnetron Sputtering on Metal Substrates for Medical Applications, Biomedical Engineering - From Theory to Applications, Prof. Reza Fazel (Ed.), pp. 253-274. (2011). ISBN: 978-953-307-637-9, InTech, Available from: http://www.intechopen.com/books/biomedical-engineering-from-theory-toapplications/nanocrystalline-thin-ceramic-films-synthesised-by-pulsed-laser-deposition-and-magnetronsputtering-o

M. G. Krishna. K. N. Rao, and S. Mohan, Structural and Optical Properties of Zirconia Thin Films, Thin Solid Films, 193-194 690-695 (1990)

P. Peshev, I. Stambolova, S. Vassilev, P. Stefanova, V. Blaskov, K. Starbova, N. Starbov, Spray Pyrolysis Deposition of Nanostructured Zirconia Thin Films, Materials Science and Engineering. B97 106-110 (2003)

S. Harasek, H.D. Wanzenboeck , B. Basnar, J. Smoliner, J. Brenner, H. Stoeri, E. Gornik, E. Bertagnolli. Metal-Organic Chemical Vapor Deposition and Nanoscale Characterization Of Zirconium Oxide Thin Films. Thin Solid Films 414 199–204 (2002)

K. Galicka-Fau, C. Legros, M. Andrieux, M. Brunet, J. Szade, G. Garry. Role of the MOCVD Deposition Conditions on Physico-Chemical Properties of Tetragonal ZrO2 Thin Films. Applied Surface Science 255 8986–8994 (2009).

A.M. Torres-Huerta, M.A. Domı´nguez-Crespo, E. Ramı´rez-Meneses, J.R. Vargas-Garcı´a. MOCVD of Zirconium Oxide Thin Flms: Synthesis and Characterization. Applied Surface Science 255 4792–4795 (2009).

A. Bendavid and P.J. Martin, Review of Thin Film Materials Deposition by the Filtered Cathodic Vacuum Arc Process at CSIRO, Journal of the Australian Ceramics Society 50 [1] 86 – 101 (2014)

R. Shacham, D. Mandler, and D. Avnir. Electrochemically Induced Sol-Gel Deposition of Zirconia Thin Films. Chem. Eur. J. 10 1936-1943 (2004). DOI: 10.1002/chem.200305469.

B. Butz, H. Stormer, D. Gerthsen, M. Bockmeyer, R. Kruger, E. Ivers-Tiffe´e, and M. Luysberg. Microstructure of Nanocrystalline Yttria-Doped Zirconia Thin Films Obtained by Sol–Gel Processing. J. Am. Ceram. Soc., 91 [7] 2281–2289 (2008). DOI: 10.1111/j.1551-2916.2008.02400.x

O. Bernard, A.M. Huntz, M. Andrieux, W. Seiler, V. Ji, S. Poissonnet. Synthesis, Structure, Microstructure and Mechanical Characteristics of MOCVD Deposited Zirconia Films, Applied Surface Science 253 4626–4640 (2007)

Z. Gan, G. Yu, Z. Zhao, C. M. Tan, and B. K. Tay. Mechanical Properties of Zirconia Thin Films Deposited by Filtered Cathodic Vacuum Arc. J. Am. Ceram. Soc., 88 [8] 2227–2229 (2005).

R. N. Chan, B. R. Stoner, J.Y. Thompson, R. O. Scattergood, J. R. Piascik. Fracture Toughness Improvements of Dental Ceramic through Use of Yttria-Stabilized Zirconia (YSZ) Thin-Film Coatings. Dental Materials 29 (2013) 881–887

McCabe, John F, Walls Angus W.G. Applied Dental Materials, 2008, Blackwell Publishing, Hongkong

C. Ko, K. Kerman, and S. Ramanathan. “Ultra-Thin Film Solid Oxide Fuel Cells Utilizing Un-Doped Nanostructured Zirconia Electrolytes”, Journal of Power Sources, 213 343-349 (2012). http://dx.doi.org/10.1016/j.jpowsour.2012.04.034

C. J. Mogab, “Use of Stabilized Zirconia as a Selective Oxygen Leak Source”, the Review of Scientific Instruments, 43 [11] 1605-1610 (1972).

F. M. L. Figueiredo and F. M. B. Marques. Electrolytes for Solid Oxide Fuel Cells. WIREs Energy Environ. 2012. doi: 10.1002/wene.23

O.I. Malyi, P. Wu, V.V. Kulish, K. Bai, and Z. Chen. “Formation and Migration of Oxygen and Zirconium Vacancies in Cubic Zirconia and Zirconium Oxysulfide”, Solid State Ionics. 212 117–122 (2012).

R. Ramamoorthy, P. K. Dutta, and S. A. Akbar. “Oxygen Sensors: materials, methods, designs and applications”, Journal of Materials Science. 38 4271 – 4282 (2003).

W. Jung, J. L. Hertz, H. L. Tuller, “Enhanced Ionic Conductivity and Phase Meta-Stability of Nano-Sized Thin Film Yttria-Doped Zirconia (YDZ)”, Acta Materialia. 57 1399–1404 (2009).

D. Eder and R. Kramera, “Impedance Spectroscopy of Reduced Monoclinic Zirconia”, Phys. Chem. Chem. Phys. 8 4476–4483 (2006).

Y. Zhang, J. Gao, D. Peng, M. Guangyao, and X.Liu. “Dip-Coating Thin Yttria-Stabilized Zirconia Films for Solid Oxide Fuel Cell Applications”, Ceramics International. 30 1049–1053 (2004).

J. H. Shim, Cheng-Chieh Chao, H. Huang, and F. B. Prinz. “Atomic Layer Deposition of Yttria-Stabilized Zirconia for Solid Oxide Fuel Cells”, Chem. Mater. 19 3850-3854 (2007).

C. Brahim, A. Ringuede´, M. Cassir, M. Putkonen, and L. Niinisto¨. “Electrical Properties of Thin Yttria-Stabilized Zirconia Overlayers Produced by Atomic Layer Deposition for Solid Oxide Fuel Cell Applications”, Applied Surface Science. 253 3962–3968 (2007).

E-O. Oh, C-M. Whang, Y-R. Lee, J-H. Lee, K. J. Yoon, B-K. Kim, J-W. Son, J-H. Lee, and H-W. Lee. “Thin Film Yttria-stabilized Zirconia Electrolyte for Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFCs) by Chemical Solution Deposition”, Journal of the European Ceramic Society. 32 1733–1741 (2012).

A.A. Solovyev, N.S. Sochugov, S.V. Rabotkin, A.V. Shipilova, I.V. Ionov, A.N. Kovalchuk, and A.O. Borduleva. “Application of PVD Methods to Solid Oxide Fuel Cells”, Appl. Surf. Sci. (2014), http://dx.doi.org/10.1016/j.apsusc.2014.03.163.

T. Setoguchi, M. Sawano, K. Eguchi, and H. Arai, “Application of the Stabilized Zirconia Thin Film Prepared by Spray Pyrolysis Method to SOFC, Solid State Ionics. 40/41, 502-505 (1990)

D. Sangalli, E. Cianci1, A. Lamperti, R. Ciprian, F. Albertini, F. Casoli, P. Lupo, L. Nasi, M Campanini, and A. Debernardi. Exploiting Magnetic Properties of Fe Doping in Zirconia: from first-principles simulations to the experimental growth and characterization of thin films. Eur. Phys. J. B 1-6 (2013). DOI: 10.1140/epjb/e2013-30669-3

Y-K. Lee, J-W. Park. Optical Properties and Stresses of RF Magnetron Sputtered Yttria-Stabilized Zirconia Thin Films. Journal of Materials Science Letters 15 1513-1516 (1996).

Reza Shahmiri, MEngStMedTech, Owen Christopher Standard, PhD, Judy N. Hart, PhD, and Charles Christopher Sorrell, PhD, Systematical review optical properties of zirconia ceramics for esthetic dental restorations: A systematic review, The journal of Prosthetic Dentistry, Volume 119 Issue 1, 2015

M. Swarnalatha, A.F. Stewart, A.H. Guenther, and C.K. Carniglia. Optical and Structural Properties of Thin Films Deposited from Laser Fused Zirconia, Hafnia, and Yttria. Appl. Phys. A54 533-537 (1992).

Y. Zhang, S. Jin, C. Liao, C.H. Yan. Microstructures and Optical Properties of Nanocrystalline Rare Earth Stabilized Zirconia Thin Films Deposited By a Simple Sol–Gel Method. Materials Letters 56 1030–1034 (2002).

W-C. Liu, D. Wu, A-D. Li, H-Q. Ling, Y-F. Tang, N-B. Ming. Annealing and Doping Effects on Structure and Optical Properties of Sol-Gel Derived ZrO2 Thin Films. Applied Surface Science 191 181-187 (2002).

S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, A. Wokaun. Optical and Mechanical Properties of Amorphous and Crystalline Yttria-Stabilized Zirconia Thin Films Prepared By Pulsed Laser Deposition. Acta Materialia 59 2330–2340 (2011).

Gurudayal, A. K. Srivastava, J. Kumar. On The Emergence of A Stabilized Cubic Phase in Pure Zirconia Thin Films at Room Temperature. Materials Letters 83 172–174 (2012).

X. Liu, A. Huang, C. Ding, P. K. Chu. Bioactivity and Cytocompatibility of Zirconia (ZrO2) Films Fabricated By Cathodic Arc Deposition. Biomaterials 27 3904–3911 (2006).

E. C. Teixeira, J. R. Piascik, B. R. Stoner, and J. Y. Thompson. Zirconia–Parylene Multilayer Thin Films for Enhanced Fracture Resistance of Dental Ceramics. Proc. IMechE 223 Part H: J. Engineering in Medicine. 897-902 (2009)

S. Sakthivel, D. Saritha and V. Baskaran, Bio-Compatibility of Zirconia (ZrO2) Ceramic Thin Films. J. Pure Appl. & Ind. Phys. 4 [4] 159-162 (2014)

G. Wang, X. Liu, J. Gao, C. Ding. In Vitro Bioactivity and Phase Stability of Plasma-Sprayed Nanostructured 3Y-TZP Coatings. Acta Biomaterialia 5 2270–2278 (2009)

A. Thaveedeetrakul, V. Boonamnuayvitaya, N. Witit-anun. Apatite Deposition on ZrO2 Thin Films by DC Unbalanced Magnetron Sputtering. Advances in Materials Physics and Chemistry, 2 45-48 (2012)




DOI: http://dx.doi.org/10.32537/jkgi.v26i2.4121

Refbacks

  • There are currently no refbacks.



JKGI Google Scholar Link



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial-BerbagiSerupa 4.0 Internasional.