Preparation of Titanium Phosphate as Solid Electrolyte Material for Secondary Battery

Handoko Setyo Kuncoro, Suhanda S, Muhammad Syaifun Nizar, Ratih Resti Astari, Didit Nur Rahman, Evvy Kartini, Bambang Prihandoko


Industrialization of lithium batteries in Indonesia requires in addition to mineral technology as well as local raw material support. Solid electrolytes are one of the lithium battery cell components that determine the working stability (long life-time) of the battery and the safety of its use. In this study solid electrolyte for secondary battery with type of Lithium Aluminum Titanium Phosphate (LATP) was synthesized in variation of LATP.n% Li2O where Li2O functioned as conductivity enhancing additive with n=0,5,10. Theoretically, the largest LATP solid electrolyte content is the Titanium Phosphate (TiP) material about 80% by weight fraction, the material can be obtained from natural mineral materials such as ilmenite and apatite in Indonesia. It has qualified for the industrialization of battery components with domestic component level (TKDN) material exceeding 60%. The TiP material was prepared by sintering destruction and acid-base methods, while the LATP.n% Li2O was made using powder metallurgy and sintering method with pre-heating 400 ° C. The XRD test result shows a diffraction pattern of TiP similar to TiP pattern from other publication reference. A slight difference in the XRD pattern indicated an excess of TiO2 rutile content in TiP material and other impurities, which has also been proven by XRF test results. The SEM test result provided a micrograph showing off the crystal blocks corresponding to the shape described by other references. The LATP material made has a single and stable ionic conductivity mechanism based on the interpretation of the Cole-cole plot diagram. The result of ionic conductivity test for LATP.n% Li2O showed variation with n = 5 having conductivity (4.5x10-5 S / cm) higher than other variations. 


TiP, LATP, solid electrolyte, natural material, lithium battery, ionic conductivity

Full Text:



P. G. Balakrishnan, R. Ramesh, and T. Prem Kumar, “Safety mechanisms in lithium-ion batteries,” Journal of Power Sources, vol. 155, no. 2. pp. 401–414, 2006.

Z. J. Zhang, P. Ramadass, and W. Fang, “Safety of Lithium-Ion Batteries,” in Lithium-Ion Batteries: Advances and Applications, 2014, pp. 409–435.

Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, “Thermal runaway caused fire and explosion of lithium ion battery,” Journal of Power Sources, vol. 208. pp. 210–224, 2012.

A. Manthiram, X. Yu, and S. Wang, “Lithium battery chemistries enabled by solid-state electrolytes,” Nature Reviews Materials, vol. 2, no. 4. 2017.

J. Steiger, D. Kramer, and R. Mönig, “Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium,” J. Power Sources, vol. 261, pp. 112–119, 2014.

E. Yulianti, R. D. Saputri, S. Sudaryanto, H. Jodi, and R. Salam, “Pembuatan Bahan Polimer Elektrolit Padat Berbasis Nanokomposit Kitosan Montmorillonite untuk Aplikasi Baterai,” J. Kim. dan Kemasan, vol. 35, no. 2, p. 77, 2013.

Menteri Perindustrian, No Title. Peraturan Menteri, 2011, p. 21 hal.

F. Nabeel, D. D. Warnana, and A. S. Bahri, “Analisa Sebaran Fosfat dengan Menggunakan Metode Geolistrik Konfigurasi Wenner-Schlumberger : Studi Kasus Saronggi, Madura,” J. Sains dan Seni Pomits, vol. 2, no. 1, pp. 2337–3520, 2013.

B. Setiawan, “Ekstraksi TiO2 Anatase dari Ilmenit Bangka Melalui Senyawa antara Amonium Peroxo Titanat dan Uji Awal Fotoreaktivitasnya (Skripsi),” Universitas Indonesia, 2012.

H. Aman, Sunarno, Fuad Nugroho, “Kinetika Reaksi Hidrolisa TiOSO 4 menjadi TiO(OH)2,” in Seminar Nasional Teknik Kimia Oleo & Petrokimia Indonesia, 2008, pp. 1–6.

Suhanda and R. Septawandar, “Isolasi Zirkonia dan Silika dari

Pasir Zirkon Teknis dengan Metode Modifikasi Fasa,” J. Keramik dan Gelas Indones., vol. 22, no. 1, pp. 22–34, 2013.

M. Chintapalli et al., “Relationship between Conductivity, Ion Diffusion, and Transference Number in Perfluoropolyether Electrolytes,” Macromolecules, vol. 49, no. 9, pp. 3508–3515, 2016.

H. Xu, S. Zhang, S. M. Anlage, L. Hu, and G. Grüner, “Frequency- and electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, no. 7, 2008.

H. S. Kuncoro, M. Sakaue, H. Nakanishi, H. Kasai, and H. K. Dipojono, “First-principles investigation on ionization strength, volume expansion, and water rotational rigidity of small water cluster systems formed around sodium(I), calcium(II), and iron(II) ions,” J. Phys. Soc. Japan, vol. 80, no. 2, 2011.

X. Wang et al., “Novel Flower-like Titanium Phosphate Microstructures and Their Application in Lead Ion Removal From Drinking Water,” J. Mater. Chem. A, vol. 2, no. 19, pp. 6718–6722, 2014.

S. Breuer et al., “Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3,” J. Mater. Chem. A, vol. 3, no. 42, pp. 21343–21350, 2015.



  • There are currently no refbacks.

JKGI Google Scholar Link

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial-BerbagiSerupa 4.0 Internasional.