Penelitian / Research

PEMANFAATAN BIOAKTIF MIMBA UNTUK SEDIAAN ANTI SERANGGA

The Use of Bioactive Neem For Preparation Anti Insects

Eddy Sapo Hartanto dan Tiurlan Farida Hutajulu
Balai Besar Industri Agro
Jl. Ir. H. Juanda No. 11, Bogor 16122

ABSTRACT: Nowadays, the use of natural plant source insecticides is one of the best chosen due to its characteristic, which is safer and easily degradable by nature (biodegradable) compared to synthetic materials. One of plant sources which consists of active components for insecticides is neem plant. This study aimed to determine the effect of extraction of active ingredients of neem seeds and leaves by fermentation using Effective Microorganisms (EM4). The extraction of seed and leaf neem to produce neem’s active compound was conducted by using Effective Microorganisms. The efficacy test of the neem seed and leaf was conducted by using fermented extract concentrated of 3% and 6% and observed with interval of 2 to 6 days. The formula used in this experiment which A as raw material and B as concentration of Effective Microorganisms are A_1 as neem’s seed, A_2 as neem’s leaves; and B as concentration of Effective Microorganisms which is B_1 as 3% concentration and B_2 as 6% concentration. The extraction product were evaporated with rotary vacuum evaporator. The extracts obtained were tested their solubility. Azadirachitin were obtained on combination of A_1B_2 for neem’s seeds for 6 days fermentation period which acquired 1313.23 ppm (61.25 %) of azadirachitin and combination of A_2B_2 for neem’s leaves which acquired 665.69ppm (69.17 %) of azadirachtin from raw materials. The active compounds were tested their ability as insecticide and showed that 50 ppm of azadirachtin concentration still effective for 14 days evaluation.

Key words: neem, azadirachitin, extraction, Effective Microorganisms

PENDAHULUAN

Dalam kehidupan sehari-hari, kita sering diganggu oleh keberadaan serangga yang biasa berada di rumah, seperti lalat, semut, nyamuk dan kecoa. Keberadaan serangga tersebut di sekitar rumah, sering memberikan dampak yang kurang baik, karena dapat membawa bibit penyakit yang tidak kita inginkan. Saat ini telah banyak beredar produk anti serangga yang berasal dari bahan pestisida sintetik. Namun penggunaan bahan pestisida jenis ini dalam waktu yang lama akan berdampak pada kesehatan penghuni rumah, karena umumnya pestisida sintetik ini tidak ramah lingkungan dan sering meninggalkan residu yang sulit terurai oleh alam. Untuk mengantisipasi hal tersebut, saat ini ada kecenderungan untuk memanfaatkan bahan tanaman yang mengandung bahan aktif sebagai bahan anti serangga. Penggunaan bahan tanaman sebagai agen anti serangga, karena relatif aman terhadap lingkungan (flora, fauna, manusia, udara), mudah terurai, sehingga masalah residu tidak dikawatirkan (Sitepu, 1999).

Indonesia merupakan salah satu negara berkembang yang mempunyai cukup sumber daya alam hayati, yang sangat bermanfaat bagi kehidupan manusia. Banyak tanaman yang sampai saat ini tidak dikenal secara luas ternyata memiliki khasiat untuk keperluan obat tradisional maupun sebagai pestisida nabati (Forssworth, 1966). Salah satu jenis tanaman yang bermanfaat tersebut adalah mimba. Mimba (Azadirachta indica A. Juss) adalah salah satu jenis tanaman yang mengandung berbagai jenis zat aktif. Tanaman mimba (Neem tree) termasuk ke dalam anggota famili Meliaceae, merupakan tanaman tahunan yang berbentuk pohon. Tanaman mimba banyak tersebar di Asia dan Afrika (Djisbar et al., 1999). Semua bagian tanaman mimba diketahui mengandung senyawa aktif, yang bermanfaat sebagai biopestisida, namun bagian tanaman yang paling banyak mengandung

Pemanfaatan Bioaktif Mimba untuk Sediaan Anti Serangga

Penelitian ekstraksi mamba menggunakan pelarut telah banyak dilakukan antara lain dengan proses maserasi menggunakan pelarut air sambil diaduk dan dibiarakan selama sehari, selanjutnya disaring. Hasil saringan ekstrak ini siap digunakan (Sudarmadj, 1993). Metode lain yang telah dilakukan adalah dengan ekstraksi menggunakan pelarut organik seperti heksana dan etanol. Ekstrak biji dapat dibuat dengan teknologi yang sederhana dengan menggunakan pelarut organik atau air. Penggunaan bahan organik seperti etanol sebagai bahan pengencer cukup efektif, namun kurang ekonomis dan perlu biaya yang relatif mahal. Sedangkan penggunaan air sebagai pelarut, cukup murah namun tidak dapat dimanfaatkan dalam jangka waktu yang lama, karena produk ekstrak yang diperoleh menggunakan bahan pengekstrak akan cenderung cepat membusuk, sehingga tidak bermanfaat lagi (Depkes RI, 1986; Permana dkk, 1993).

Untuk mengatasi adanya kendala dalam proses ekstraksi biji dan daun mamba, maka perlu dilakukan penelitian proses ekstraksi menggunakan Effective microorganism (EM4). Effective microorganisms (EM4), adalah inokulum yang berupa kumpulan dari berbagai jenis mikroorganisme yang dapat berperan dalam proses ekstraksi bahan nabati dengan jalan merombak bahan organik menjadi bentuk yang lebih sederhana, melalui proses fermentasi. Proses fermentasi ini dapat terjadi, karena EM4 terdiri atas sekitar 80 jenis mikroorganisme antara lain jenis bakteri fotosintesa, bakteri asam laktat, ragi (yeast), Actinomycetes dan jamur. Mikroorganisme selain dapat mengekstrak komponen bahan aktif yang terkandung dalam bahan baku, juga dapat berperan sebagai pengendali hama yang menyebabkan tanaman, karena perannya sebagai antagonis terhadap mikroba penganggu lainnya (Wididana dan Muntoyah, 1999).

Penggunaan EM4 dalam proses ekstraksi zat aktif, disamping akan diperoleh bahan aktif yang berfungsi sebagai biopestisida, mikroorganisme dalam EM4 tersebut juga aktif dalam menghambat serangan serangga penganggu (Wididana dan Muntoyah, 1999). Informasi mengenai efektisitas ekstrak bioaktif biji dan daun mamba sampai saat ini belum diketahui.

Penelitian ini bertujuan untuk mengetahui pengaruh cara ekstraksi bahan aktif biji dan daun mamba dengan metode fermentasi menggunakan EM4 serta pemanfaatannya sebagai bahan anti serangga rumah tangga.

BAHAN DAN METODE

Bahan

Alat

Peralatan yang digunakan dalam penelitian ini adalah blender merek Philip yang bergungsi sebagai grinder, oven merek Memmert, pH meter merek Hanna, *High Performance Liquid Chromatography* (HPLC) merek Shimadzu LC-20AD, evaporator merek Buchi, timbangan analitik merek Sartorius, labu ukur, gelas piala, erlenmeyer, pipet, gelas ukur merek pirex, pangaduk, termometer, ember plastik, jerigen, botol kemasan, plastik kemasan dan peralatan laboratorium lainnya.

Metode

Penelitian dilakukan dalam 2 tahap, yaitu tahap penelitian pendahuluan dan tahap penelitian lanjutan. Pada penelitian pendahuluan dilakukan uji coba untuk mengetahui kemampuan pelarut air dan manfaat EM4 dan ragi tape serta ragi roti dalam mengekstrak bahan aktif mimba. Perlu dikatakan bahwa penelitian yang digunakan dalam proses ekstraksi ini adalah menggunakan cara muserasi air dan proses ekstraksi dengan memanfaatkan starter mikroba berupa EM4 dan ragi (*Saccharomyces* sp.). Hasil terbaik selanjutnya digunakan untuk proses pada penelitian lanjutan.

1. **Penelitian Pendahuluan**

Penelitian pendahuluan dilakukan untuk menguji tingkat aktivitas ragi roti dan ragi tape terhadap bahan baku baik berupa biji dan daun mimba. Uji aktivitas mikroba terhadap bahan baku mimba ini dilakukan dengan cara:

Bahan baku daun mimba kering seberat 500 gram dibender, molase 210 ml, air 7 liter diaduk dan dicampur merata, selanjutnya ditambahkan seberat 3% mikroorganisme berupa ragi roti, ragi tape dan EM4 yang telah diaktifkan. (Widiana, dan Muntoyah 1999). Pengamatan aktivitas mikroba dilakukan secara visual setiap hari sampai 6 hari, dengan mencium bau yang dihasilkan. Adanya bau busuk pada proses fermentasi menggunakan mikroba tersebut, menandakan bahwa mikroba telah mati dan tidak aktif kembali. Diagram alir penelitian pendahuluan dapat dilihat pada Gambar 1.

```
Gambar 1. Diagram alir penelitian pendahuluan
```

Pemanfaatan Bioaktif Mimba untuk Sediak Anti Serangga
2. Penelitian lanjutan

Pelaksanaan penelitian lanjutan dimulai dengan proses persiapan bahan dengan cara pemilihan bahan berupa biji dan daun mimba yang utuh, bersih dari kotoran dan tidak rusak. Kemudian dikeringkan dalam oven pada suhu di bawah 60 °C (Depkes RI, 1986), setelah kering biji dan daun mimba masing-masing digiling menggunakan blender, hasil penggilingan selanjutnya diayak dengan menggunakan nyak yang ayak dengan mesh 40 dan disimpan dalam wadah kering dan tertutup rapat. Serbuk biji dan daun mimba masing-masing difermentasi dengan cara maserati menggunakan EM4 yang merupakan inokulum dari berbagai jenis mikroba.

Gambar 2. Diagram Alir Ekstraksi Biji Mimba Menggunakan Cara Fermentasi
Analisis ekstrak

a. Uji Kelarutan (Depkea, 2000)
Analisis yang dilakukan terhadap ekstrak mimba yang dihasilkan dilakukan dengan cara 5,0 gram ekstrak dimasukkan dalam labu bertutup ditambah 100 ml pelarut (etanol, n- heksana, kloroform dan air) selanjutnya dilakukan maserasi selama 24 jam sambil berkali-kali dikocok selama 6 jam dan kemudian dibiarkan selama 18 jam. Setelah maserasi selama 24 jam selesai selanjutnya disaring menggunakan kertas saring whatman, kemudian sebanyak 20 ml filtrat yang diperoleh dituangkan pada suhu 105 °C sampai diperoleh bobot cawan penguap tetap. Kadar ekstrak yang terlarut dalam pelarut dapat dihitung dalam prosen.

\[
\% \text{ Kelarutan} = \frac{\text{Bobot cawan + residu} - \text{bobot cawan kosong}}{\text{Bobot ekstrak contoh}} \times \frac{100}{20} \times 100 \%
\]

b. Uji Bahan Aktif

Untuk uji bahan aktif yang terkandung dalam ekstrak mimba dilakukan dengan menggunakan High Performance Liquid Chromatography (HPLC) LC-20AD yang dilakukan dengan cara sebanyak 0,45 – 0,55 gram ekstrak kental dimasukkan dalam labu ukur 100 mL dan dilarutkan dalam 80 mL etanol, kemudian disonifikasi (digetarkan) dalam water bath pada suhu 80 °C selama 30 menit, setelah larutan diring dalam kipas diteruskan dengan penambahan etanol sampai volume tepat 100 mL. Selanjutnya larutan disaring dengan kertas saring membran ukuran 0,45 µm, filtrat yang tersaring diambil 10 µm untuk dinjeksikan ke alat HPLC. Kondisi HPLC menggunakan kolom platinum EPS C18 dengan fase bergerak metanol : air (7 : 3), pada kecepatan alir 1,0 mL/ menit dan detektor UV 254 nm.

c. Uji manfaat (Metode Prasetyo dan Yusuf, 2004)
Untuk uji manfaat ekstrak mimba yang dihasilkan dilakukan uji manfaat semut liar terhadap ekstrak mimba. Proses uji manfat anti semut ini dilakukan dengan cara sebagai berikut: Disiapkan 3 cawan petri sebagai wadah gula yang masing-masing diolesi dengan larutan ekstrak biji mimba dengan konsentrasi 50 ppm, larutan ekstrak daun mimba dengan konsentrasi 50 ppm dan sebagai perlakuan kontrol 1 cawan petri diolesi air netral, selanjutnya dibiarkan cawan tersebut mengering. Kemudian ke-3 dalam cawan petri tersebut masing masing diberi umpan gula kristal putih sebanyak 25 gram. Cawan petri yang telah diisi gula dibiarkan dalam keadaan tertutup dan diletakkan pada ruang yang biasa dilengkapi semut (Ponera sp) dan mudah dikontrol. Pengamatan dilakukan selama 14 hari dan setiap 2 hari dilakukan penimbangan umpan gula yang tersisa. Untuk mengetahui tingkat kesuksesan semut terhadap umpan gula yang diberikan, ditandai dengan berkurangnya jumlah gula sebagai umpan.

HASIL DAN PEMBAHASAN

1. Penelitian pendahuluan

<table>
<thead>
<tr>
<th>Tabel 1. Hasil Analisis Bahan Baku</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
</tbody>
</table>

Pemanfaatan Bioaktif Mimba untuk Sediaan Anti Serangga
Penggunaan mikroorganisme yang berperan dalam proses fermentasi sebelum digunakan terlebih dahulu dilakukan aktivasi, yaitu dengan pengenceran dan penambahan nutrisi berupa molase, agar mikroorganisme tersebut siap digunakan. Untuk mengetahui kemampuan mikroorganisme tersebut selanjutnya, biakan mikroorganisme yang telah siap diaplakisikan pada campuran serbuk mimba air dan molase sebagai nutrisi.

Kemudian dilakukan pengamatan secara visual aktivitas mikroba dalam melakukan fermentasi serbuk mimba. Hasil pengamatan secara visual proses fermentasi menggunakan mikroba jenis *Saccharomyces* sp. berupa ragi roti, ragi tape dan *Effective Microorganisms* (EM4) serta kontrol tanpa penambahan mikroorganisme dapat dilihat pada Tabel 2.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis mikroba</th>
<th>Aktivitas</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ragi roti (Saccharomyces sp.)</td>
<td>Tidak aktif</td>
<td>Berlendir dan berbau busuk</td>
</tr>
<tr>
<td>2.</td>
<td>Ragi tape (Saccharomyces sp.)</td>
<td>Tidak aktif</td>
<td>Berlendir dan berbau busuk</td>
</tr>
<tr>
<td>3.</td>
<td>EM4</td>
<td>Aktif</td>
<td>Sedikit berbau etanol</td>
</tr>
<tr>
<td>4.</td>
<td>Maserasi air</td>
<td></td>
<td>Berjamur dan berbau busuk</td>
</tr>
</tbody>
</table>

Pengamatan secara visual terhadap proses fermentasi keempat perluakan tersebut, menunjukkan bahwa proses fermentasi menggunakan ketiga perluakan, yaitu ragi roti, ragi tape dan mase rasi air mulai hari ketiga telah menunjukkan ketidakaktifan dalam kegiatan fermentasi, hal ini terlihat adanya bau yang ditimbulkan dan secara visual terlihat berlendir dalam proses fermentasi tersebut. Proses ini diduga terjadi pembusukan adanya racun yang terkandung dalam biji mimba yang difermentasi. Sedangkan pada proses fermentasi menggunakan *Effective Microorganisms* (EM4) proses fermentasi berlangsung dengan baik selama 6 hari pengamatan. Hasil pengamatan secara visual, dengan indra penciuman, bahwa proses fermentasi tersebut menghasilkan bau etanol. Hal ini menunjukkan bahwa proses fermentasi berjalan dengan baik.

Dengan hasil penelitian pendahuluan ini, maka pada penelitian lanjutan sumber mikroorganisme yang digunakan adalah EM4 dengan konsentrasi 3 % dan 6 %.

2. Penelitian Lanjutan
 a. Rendemen

 Rendemen ekstrak mimba yang diperoleh dihitung berdasarkan berat kering, hasil perhitungan rendemen setiap perluakan dapat dilihat pada Tabel 3.

<table>
<thead>
<tr>
<th>No.</th>
<th>Perluakan</th>
<th>Lama Fermentasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A<sub>1</sub>B<sub>1</sub></td>
<td>2 hari, 4 hari, 6 hari</td>
</tr>
<tr>
<td>2.</td>
<td>A<sub>1</sub>B<sub>2</sub></td>
<td>0,54, 0,68, 0,79</td>
</tr>
<tr>
<td>3.</td>
<td>A<sub>2</sub>B<sub>1</sub></td>
<td>0,63, 0,71, 0,81</td>
</tr>
<tr>
<td>4.</td>
<td>A<sub>2</sub>B<sub>2</sub></td>
<td>0,64, 0,76, 0,83</td>
</tr>
</tbody>
</table>

Hasil rendemen ekstrak yang diperoleh terlihat bahwa rendemen masih kurang dari 1 %, yaitu antara 0,54 % sampai 0,89 %. Rendemen berdasarkan berat kering ini relatif masih rendah bila dibandingkan dengan penggunaan etanol sebagai pelarut untuk mengekstrak bahan aktif, seperti yang dilaporkan oleh *Suııta et al.* (2007) penggunaan etanol teknis sebagai pelarut, dapat mengekstrak biji mimba dengan hasil ekstrak kental mencapai 3 %. Berdasarkan analisis variansi terlihat bahwa jenis bahan baku, konsentrasi EM4 dan lama fermentasi berbeda nyata \(F_{0.05} = F_{0.05} \) (P<0.05) terhadap rendemen hasil ekstrak yang dihasilkan. Hal ini terlihat bahwa ada kecenderungan bahwa semakin tinggi konsentrasi EM4 dan semakin lama proses fermentasi akan memberikan rendemen yang semakin tinggi.

b. Kelarutan

 Uji kelarutan ekstrak bahan aktif mimba sangat diperlukan, karena dalam pemanfaatannya, ekstrak mimba ini dapat digunakan dalam berbagai bentuk produk.
Bentuk produk anti serangga dapat berupa *dust* (debu) dengan bahan pembawa/pengisi talk, bentonit atau *pyrophyllite*. Ada juga yang diformulasikan dalam bentuk cair, dapat berupa larutan, emulsii dan suspensi, yang selanjutnya digunakan untuk produk berupa *spray* yang dapat disempretkan (Osol, 1980). Hasil uji kelarutan ekstraksi biji mimba dan daun mimba dapat dilihat pada Tabel 4:

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis pelarut</th>
<th>Kelarutan (%)</th>
<th>A<sub>1</sub>B<sub>1</sub></th>
<th>A<sub>1</sub>B<sub>2</sub></th>
<th>A<sub>2</sub>B<sub>1</sub></th>
<th>A<sub>2</sub>B<sub>2</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Etanol</td>
<td>76,42</td>
<td>76,86</td>
<td>79,12</td>
<td>78,54</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>n-Heksana</td>
<td>89,56</td>
<td>90,23</td>
<td>92,64</td>
<td>92,26</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Kloroform</td>
<td>92,28</td>
<td>92,58</td>
<td>94,36</td>
<td>94,42</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Air</td>
<td>48,24</td>
<td>47,93</td>
<td>50,93</td>
<td>50,64</td>
<td></td>
</tr>
</tbody>
</table>

Berdasarkan hasil uji kelarutan pada Tabel 4, dapat terlihat bahwa tingkat kelarutan ekstrak mimba memiliki tingkat kelarutan yang bervariasi, tergantung dengan jenis pelarut yang digunakan. Tingkat kelarutan terendah terjadi pada ekstrak biji mimba (A₁B₂) dengan pelarut air hanya mencapai 47,93%, sedangkan kelarutan tertinggi terjadi pada ekstrak daun mimba (A₂B₂) dengan tingkat kelarutan 94,42%. Ekstrak mimba baik dari bahan biji maupun daun mimba memiliki tingkat kelarutan yang berbeda dan ada kecenderungan bahwa ekstrak mimba yang berasal dari daun mimba relatif lebih tinggi tingkat kelarutannya dibandingkan dengan bahan biji mimba. Berdasarkan analisis variansi terlihat bahwa jenis bahan baku dan konsentrasi EM4 berbeda nyata F_b = F_t = 0,05 (P<0,05) terhadap tingkat kelarutan hasil ekstrak mimba yang dihasilkan.

c. Bahan aktif
Bahan aktif yang terpenting dalam mimba adalah azadirachtin, sehingga bahan aktif yang dianalisis adalah azadirachtin. Hasil ekstraksi biji mimba dan daun mimba menggunakan bahan mikroorganisme dapat dilihat pada grafik dalam Gambar 3. Bahan aktif azadirachtin yang diperoleh pada proses ekstraksi menggunakan *Effective Microorganisms* (EM4) pada grafik Gambar 3, terlihat bahwa ada kecenderungan semakin lama proses ekstraksi, akan diperoleh produk ekstrak dengan kadar azadirachtin yang semakin tinggi, hal ini terlihat dari persentase azadirachtin yang terekstrak.

Hasil ekstraksi bahan aktif azadirachtin tertinggi diperoleh pada perlaku ekstraksi biji mimba menggunakan EM4 6% (A₂B₂), dengan lama ekstraksi 6 hari, yaitu diperoleh azadirachtin sebanyak 1313,23 ppm atau kandungan azadirachtin biji mimba terekstrak sebanyak 61,25% dari biji mimba kering. Sedangkan kadar azadirachtin terendah

Pemanfaatan Bioaktif Mimba untuk Sediaan Anti Serangga
diperoleh pada perlakuan ekstraksi, simplisia daun mimba menggunakan EM4 3 % (A1B1) dengan hasil azadirachtin sebanyak 665,69 ppm atau dapat terestrak 69,17 %. Penggunaan EM4 sebagai starter akan memberikan nilai tambah yang lebih baik, karena EM4 mampu memecah komponen bahan nabati, menjadi senyawa yang lebih sederhana, melalui proses fermentasi (Wididana, dan Muntoyah 1999).

Data Spektroskopi HPLC

Gambar 4. Kromatogram Ekstrak Biji Mimba Menggunakan HPLC

Gambar 5. Kromatogram Ekstrak Daun Mimba Menggunakan HPLC

d. Uji manfaat

Untuk mengetahui kemampuan hasil ekstrak terhadap serangga, maka dilakukan uji kemampuan ekstrak mimba terhadap semut yang ada di sekitar kegiatan penelitian. Hasil penelitian menunjukkan bahwa produk ekstrak biji dan daun mimba mampu mengendalikan semut yang biasa menyerang gula. Pada tabel 5 menunjukkan bahwa wadah gula yang diolesi dengan produk ekstrak biji mimba dan daun mimba dengan konsentrasi azadirachtin 50 ppm dapat mengendalikan semut. Hal ini terlihat bahwa sampai hari ke 4, gula umpan pada cawan petri masih utuh tidak berkurang (masih 100 %), percobaan kontrol yang diolesi dengan air pada hari ke 4 sudah berkurang menjadi 92,3 % dari bobot awal. Pada percobaan ini semut-semut yang mendekat pada hari ke 0 sampai hari ke 4, adalah semut kecil berwarna hitam. Semut-semut hitam kecil tersebut sampai pada hari ke 4 hanya mendekati gula pasir yang wadahnya (cawan petri) diolesi dengan air sebagai kontrol. Sedangkan pada gula yang wadahnya telah diolesi dengan produk ekstrak biji mimba dan daun mimba tidak terlihat adanya semut hitam kecil yang mendekat. Kemudian baru pada hari ke – 6, sudah ada semut yang mulai mendekat, cawan umpan gula pada cawan yang diolesi dengan ekstrak mimba. Hal ini kemungkinan adanya isitam komponen mimba yang mudah terurai (Sudarmadji, 1999).

<table>
<thead>
<tr>
<th>Produk Ekstrak</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekstrak Biji mimba</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>98,6</td>
<td>95,2</td>
<td>92,3</td>
<td>89,6</td>
<td>84,5</td>
</tr>
<tr>
<td>Ekstrak Daun Mimba</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>93,3</td>
<td>93,6</td>
<td>98,5</td>
<td>86,1</td>
<td>83,9</td>
</tr>
<tr>
<td>Kontrol (Air)</td>
<td>100</td>
<td>97,5</td>
<td>92,3</td>
<td>82,4</td>
<td>60,8</td>
<td>31,2</td>
<td>14,8</td>
<td>2,5</td>
</tr>
</tbody>
</table>

Selanjutnya sampai hari ke – 14 gula pada cawan petri yang ada ekstrak mimba masih tersisa berkisar antara 83,9 - 84,5 % dan bisa 2,5 % terjadi pada kontrol. Hal ini disebabkan ekstrak biji mimba dan ekstrak daun mimba mengandung azadirachtin yang berfungsi sebagai repellent, yang dapat menyebabkan semut enggan memakan gula tersebut (Sudarmadji, 1999).

KESIMPULAN DAN SARAN

Kesimpulan

Dari hasil penelitian yang dilakukan dapat disimpulkan sebagai berikut:

1. Effective Microorganisms (EM4) dapat digunakan untuk membantu proses ekstraksi biji dan daun mimba.

2. Penggunaan mikroorganisme secara tunggal, tidak efektif dalam proses ekstraksi biji maupun daun mimba.

3. Penggunaan EM4 sebanyak 6 % dengan lama fermentasi 6 hari memberikan hasil yang terbaik dengan kadar azadirachtin sebanyak 1313,23 ppm (61,25 %) untuk hasil ekstark dari biji mimba dan 665,69 ppm (69,17 %) dari kadar awal azadirachtin simplisia daun mimba.

4. Ekstrak kental mimba relatif mudah larut dalam pelarut organik dibandingkan dengan pelarut air.

5. Ekstrak mimba dengan konsentrasi 50 ppm dapat dimanfaatkan untuk mengendalikan semut hitam kecil masih efektif sampai pada hari ke-14.

Pemanfaatan Bioaktif Mimba untuk Sediaan Anti Serangga
Saran
Perlu dilakukan penelitian lebih lanjut penggunaan Effective Microorganisms-4 (EM4) dan konsentrasi yang tepat dalam proses ekstraksi bahan aktif yang terkandung dalam bahan tanaman lain, serta perlu dilakukan uji coba, terhadap toksisitas produk yang dihasilkan, untuk memastikan tingkat keamanannya.

DAFTAR PUSTAKA

WARTA IHP VOL. 29 No. 1 JULI 2012