PENDAHULUAN

Pengolahan buah-buahan dimaksudkan untuk mengubah buah-buahan menjadi produk yang lebih awet dan mudah dipergunakan. Selain itu pengolahan buah-buahan juga dimaksudkan untuk menambah macam ragam produk sehingga orang dapat mencicipi buah-buahan meskipun bukan pada waktu musimnya.

Dengan pertimbangan peluang pasar diatas serta proses pembuatannya tidak perlu menggunakan teknologi tinggi, maka dilakukan penelitian ini. Diharapkan produk dapat dikembangkan secara komersial oleh industri pengolahan buah-buahan (terutama untuk skala industri kecil) di Indonesia untuk pemasaran dalam negeri maupun ekspor.

*) Kepada siapa surat menyurat dialamatkan
To whom correspondence should be addressed
BAHAN DAN METODE PENELITIAN

Bahan

Metode Penelitian

Pada penelitian ini dilakukan pembuatan fruit leathers dari tiga macam bahan baku, yaitu: campuran buah-buahan (pisang Ambon, pepaya dan nenas), jambu biji, dan mangga Indramayu. Proses pembuatan produk yang dilakukan ialah sebagai berikut: buah dikupas, dipotong-potong, dihancurkan, kemudian dicampur bahan-bahan tambahan gula dan asam sitrat. Untuk mencegah terjadinya perubahan warna dicoba pembuatan produk dengan dan tanpa penambahan natrium metabisulfit. Campuran kemudian dihipiskan diatas loyang beralas plastik dan dikeringkan dalam oven 50°C. Setelah kering, bahan dipotong-potong, dikemas dalam kantong plastik dan disimpan selama 0, 1, 2 dan 3 bulan. Ulangan percobaan dilakukan sebanyak dua kali.

Metode Analisis

HASIL DAN PEMBAHASAN

Bahan baku buah-buahan segar yang digunakan pada penelitian juga dianalisis komposisinya seperti dapat dilihat pada Tabel 1.

<table>
<thead>
<tr>
<th>Jenis Buah</th>
<th>Kadar Air (%)</th>
<th>Kadar Gula (%)</th>
<th>Total Asam (mg/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pisang Ambon</td>
<td>71,83</td>
<td>23,90</td>
<td>0,45</td>
</tr>
<tr>
<td>Nenas</td>
<td>83,21</td>
<td>12,30</td>
<td>0,79</td>
</tr>
<tr>
<td>Pepaya</td>
<td>85,42</td>
<td>12,00</td>
<td>0,15</td>
</tr>
<tr>
<td>Jambu Biji</td>
<td>84,97</td>
<td>10,80</td>
<td>0,40</td>
</tr>
<tr>
<td>Mangga Indramayu</td>
<td>79,46</td>
<td>19,10</td>
<td>1,62</td>
</tr>
</tbody>
</table>

Kadar Air

Hasil analisis kadar air menunjukkan bahwa kadar air produk yang dibuat dari tiga macam formula tidak begitu berbeda satu sama lain. Hal ini disebabkan karena kadar air diatur sedemikian rupa supaya produk tidak terlalu kering maupun tidak terlalu basah. Produk yang terlalu kering menghasilkan produk yang teksturnya keras, sedangkan jika terlalu basah daya awetnya tidak lama. Kisaran nilai kadar air produk yang dibuat ialah antara 10,0 sampai 15,9 persen. Sedangkan kisaran nilai kadar air berdasarkan formula produk yang dibuat ialah produk campuran buah-buahan 10,4 sampai 14,5%, produk jambu biji 10,0 sampai 16,9%, dan produk mangga 10,9 sampai 15,9%.

Kadar air produk selama penyimpanan sampai tiga bulan pada suhu kamar juga tidak mengalami perubahan yang berarti. Hal ini mungkin karena dengan dikemas dalam kantong plastik, produk tidak mengalami perubahan akibat penguapan ataupun penyerapan air dari luar.

Kadar Gula

Kadar gula produk yang dibuat dari tiga macam formula tidak begitu berbeda satu sama lain oleh karena untuk setiap formula penambahan jumlah gulanya sama. Pengaruh sulfat tidak terlihat perbedaannya, sedangkan pengaruh penyimpanan pada suhu kamar menunjukkan kecenderungan menurunnya kadar gula. Kisaran nilai kadar gula produk yang dibuat ialah antara 73,6 sampai 84,8 persen. Sedangkan penurunan nilai kadar gula produk selama penyimpanan berdasarkan formula yang dibuat dengan perlakuan sulfat ialah produk campuran buah-buahan 84,2% (0 bulan) menurun menjadi 75,9% (3 bulan), produk jambu biji 77,4% (0 bulan) menurun men
jadi 73,6% (3 bulan), dan produk mangga 81,2% (0 bulan) menurun menjadi 78,3% (3 bulan). Salah satu penyebab penurunan kadar gula mungkin disebabkan karena aktivitas jasad renik jenis halosilik yang dapat tumbuh atau bertahan pada kadar gula yang tinggi. Jasad renik juga dapat memecah gula menjadi alkohol dan senyawa senyawa organik lainnya. Rata-rata kadar gula produk **fruits leathers** dapat dilihat pada Tabel 2.

Tabel 2. Rata-rata kadar gula produk **fruits leathers** (%).

<table>
<thead>
<tr>
<th></th>
<th>Campuran (Pisang, Pepaya, Nenas)</th>
<th>Jambu</th>
<th>Mangga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-sulfit:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 bulan</td>
<td>84,7</td>
<td>79,6</td>
<td>84,8</td>
</tr>
<tr>
<td>1 bulan</td>
<td>83,2</td>
<td>81,7</td>
<td>79,3</td>
</tr>
<tr>
<td>2 bulan</td>
<td>82,2</td>
<td>86,2</td>
<td>82,2</td>
</tr>
<tr>
<td>3 bulan</td>
<td>81,9</td>
<td>85,4</td>
<td>79,8</td>
</tr>
<tr>
<td>Sulfit:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 bulan</td>
<td>84,2</td>
<td>77,4</td>
<td>81,2</td>
</tr>
<tr>
<td>1 bulan</td>
<td>81,8</td>
<td>76,8</td>
<td>81,6</td>
</tr>
<tr>
<td>2 bulan</td>
<td>74,4</td>
<td>74,5</td>
<td>77,8</td>
</tr>
<tr>
<td>3 bulan</td>
<td>75,9</td>
<td>73,6</td>
<td>78,3</td>
</tr>
</tbody>
</table>

Total Asam

Total asam produk selama penyimpanan tiga bulan rata-rata menunjukkan kecenderungan meningkat, meskipun peningkatan kelihatan tidak begitu besar. Produk yang mengalami perlakuan dengan sulfat tidak begitu menunjukkan perubahan dalam total asam dibanding dengan produk yang tidak mengalami perlakuan sulfat (non-sulfat). Perbedaan ini mungkin diantaranya karena pengaruh sulfat yang menghambat pertumbuhan jasad renik.

Tabel 3. Rata-rata total asam **fruits leathers** (mg asam sirtat/100 g).

<table>
<thead>
<tr>
<th></th>
<th>Campuran (Pisang, Pepaya, Nenas)</th>
<th>Jambu</th>
<th>Mangga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-sulfat:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 bulan</td>
<td>1,38</td>
<td>0,84</td>
<td>1,00</td>
</tr>
<tr>
<td>1 bulan</td>
<td>0,80</td>
<td>1,01</td>
<td>1,47</td>
</tr>
<tr>
<td>2 bulan</td>
<td>0,76</td>
<td>0,99</td>
<td>1,46</td>
</tr>
<tr>
<td>3 bulan</td>
<td>0,88</td>
<td>1,01</td>
<td>1,72</td>
</tr>
<tr>
<td>Sulfat:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 bulan</td>
<td>1,38</td>
<td>0,85</td>
<td>1,41</td>
</tr>
<tr>
<td>1 bulan</td>
<td>0,61</td>
<td>0,98</td>
<td>1,41</td>
</tr>
<tr>
<td>2 bulan</td>
<td>0,60</td>
<td>0,93</td>
<td>1,34</td>
</tr>
<tr>
<td>3 bulan</td>
<td>0,61</td>
<td>0,86</td>
<td>1,55</td>
</tr>
</tbody>
</table>

Pada produk non-sulfat mungkin jasad renik masih dapat berkembangbiak (meskipun tidak begitu aktif karena adanya gula dan kadar air yang rendah), sehingga masih aktif melakukan metabolisme yang menghasilkan asam-asam organik. Menurut FRAZIER dan WESTHOFF (1977) total asam dapat dipengaruhi oleh jumlah jasad renik. Meningkatnya jumlah mikroba akan meningkatkan jumlah asam-asam organik yang dihasilkannya. Rata-rata total asam ke tiga macam produk dapat dilihat pada Tabel 3.

Vitamin C

Kadar vitamin C produk yang dibuat dari tiga macam formula berbeda satu sama lain karena kadar vitamin C masing-masing buah-buahan yang dipakai untuk membuat produk berbeda-beda. Berdasarkan hasil analisis bahan baku, kadar vitamin C buah-buahan yang digunakan untuk membuat formulasi produk ialah pisang Ambon 5,00 mg/100 g, nenas 21,00 mg/100 g, pepaya 74,00 mg/100 g, jambu biji 82,00 mg/100 g dan mangga Indramayu 15,00 mg/100 g.

Kadar vitamin C semua produk cenderung menurun selama penyimpanan, baik pada produk yang mengalami perlakuan dengan sulfat maupun yang tidak mengalami perlakuan. Penurunan kadar vitamin C produk selama penyimpanan mungkin disebabkan karena proses oksidasi yang berlangsung selama penyimpanan.

Produk yang ditambah sulfat tidak menunjukkan perbedaan yang nyata dengan produk yang tidak ditambah sulfat. Meskipun menurut HAARD (1985) penambahan senyawa belerang dioksida (SO2) dapat menghambat reaksi pencoklatan yang akan merusak vitamin C. Tidak terdapatnya nilai kadar vitamin C untuk kedua jenis produk ini mungkin pertama disebabkan karena produk dikemas dalam plastik polietilen yang cukup memberikan perlindungan terhadap pengaruh oksidasi oleh udara luar. Selain itu karena produk sebelum dianalisis disimpan dalam tempat yang tertutup (tidak kontak dengan sinar matahari), maka pengaruh oksidasi vitamin C oleh sinar matahari tidak terjadi.

Penurunan nilai kadar vitamin C produk selama penyimpanan berdasarkan formula yang dibuat dengan perlakuan sulfat ialah produk campuran buah-buahan 7,30 mg/100 g (0 bulan) menurun menjadi 6,08 mg/100 g (3 bulan), produk jambu biji 26,3 mg/100 g (0 bulan) menurun menjadi 25,9 mg/100 g (3 bulan), dan produk mangga 5,13 mg/100 g (0 bulan) menurun menjadi 4,70 mg/100 g (3 bulan). Grafik perubahan kadar vitamin C
dari produk selama penyimpanan dapat dilihat pada Gambar 1 dan 2.

![Gambar 1. Penurunan kadar vitamin C produk yang tidak mengandung non-sulfite selama penyimpanan.](image)

![Gambar 2. Penurunan kadar vitamin C produk yang mengandung sulfite selama penyimpanan.](image)

Residu Sulfite

Hasil pemeriksaan residu sulfite dalam produk yang dihasilkan menunjukkan bahwa untuk ketiga jenis produk yang dibuat, ternyata kadar sulfite pada produk rata-rata dibawah 50 ppm. Residu sulfite dalam produk ternyata masih memenuhi syarat yang diperbolehkan untuk produk buah-buahan kering. Menurut CHICHESTER dan TANNER JR (1977) batas kandungan sulfite dalam buah-buahan kering yang diperbolehkan ialah 2000 ppm.

Jumlah Bakteri

Dari hasil pemeriksaan mikrobiologi ternyata jumlah bakteri dalam produk menunjukkan penurunan selama penyimpanan. Rata-rata jumlah bakteri pada awal penyimpanan (0 bulan) ialah 200 koloni per gram, sedangkan rata-rata setelah penyimpanan (3 bulan) ialah 30 koloni per gram.

![Gambar 3. Histogram pengaruh lama penyimpanan terhadap jumlah bakteri dalam fruit leathers.](image)

Kadar gula yang relatif tinggi dalam produk juga dapat berfungsi sebagai pengawet karena gula mampu mengikat air sehingga tidak dapat digunakan oleh jasad renik dan juga karena pengaruh daya osmotiknya (FRAZIER dan WESTHOFF, 1977).

Jumlah Kapang

Dari hasil pemeriksaan mikrobiologi ternyata jumlah kapang dalam produk menunjukkan penurunan selama...
penyimpanan. Rata-rata jumlah kapang awal penyimpanan (0 bulan) ialah 140 koloni per gram sedangkan rata-rata setelah penyimpanan (3 bulan) ialah 20 koloni per gram.

Dari histogram pada Gambar 4 dapat dilihat bahwa penurunan jumlah kapang pada produk yang mendapat perlakuan sulfit lebih cepat dari pada produk yang tidak mengalami perlakuan sulfit. Jadi sama halnya dengan jumlah bakteri, penambahan sulfit pada buah-buahan dapat menghambat pertumbuhan kapang dan bahkan juga mengurangi jumlahnya. Pengaruh kadar gula yang relatif tinggi (70 sampai 80%) dalam produk juga menyebabkan gula mengikat air sehingga tidak dapat digunakan oleh jasad renik.

![Histogram penurunan jumlah kapang pada produk buah-buahan](image)

Uji Organoleptik

R a s a

Skor daya terima rasa produk *fruit leathers* baik yang dibuat dari campuran buah-buahan, jambu biji ataupun mangga, selama penyimpanan dari 0 bulan sampai 3 bulan tidak menunjukkan perubahan yang nyata. Skor berkisar antara 6,0 (suka) sampai 7,0 (amat suka). Produk masih disukai meskipun telah disimpan selama tiga bulan. Menurut McBEAN et al (1971) senyawa-senyawa organik yang terbentuk pada waktu pengeringan memberikan kontribusi terhadap rasa dan baunya.

![Histogram penurunan jumlah kapang pada produk buah-buahan](image)

B a u

Hasil uji organoleptik oleh panelis terhadap produk menunjukkan bahwa skor bau menunjukkan biasa sampai suka, yaitu berkisar antara 5,0 (biasa) sampai 6,0 (suka).

Warna

Warna produk *fruit leathers* yang disimpan sampai tiga bulan menunjukkan skor disukai oleh panelis, yaitu berkisar antara 5,0 (biasa) sampai 7,0 (amat suka). Produk yang mengalami perlakuan sulfit warnanya relatif lebih disukai dari pada yang tidak mengalami perlakuan sulfit.

Perubahan warna buah-buahan menjadi kecoklatan disebabkan karena reaksi pencoklatan (browning) yang dapat disebabkan karena proses enzimatis maupun non-enzimatis. Dalam proses pembuatan fruit leathers ini reaksi pencoklatan akan lebih banyak bersifat non-enzimatis dari pada bersifat enzimatis karena enzim dalam bahan akan terhambat pada suhu pengeringan yang tinggi dan terdapatnya sulfat dan kadar gula yang tinggi.

Tekstur

Tekstur produk tidak menunjukkan perbedaan yang berarti meskipun telah disimpan sampai tiga bulan. Skor penilaian tekstur oleh panelis berkisar antara 5,0 (biasa) sampai 6,0 (suka).

Pengeringan produk ditetapkan pada suhu 50°C selama 24 jam, oleh karena jika suhu pengeringan terlalu
tinggi akan menyebabkan terbentuk lapisan kering pada permukaan produk (case hardening) akibat pengeringan yang terlalu cepat. Hal ini akan menyebabkan tekstur produk alot septerti karet (rubbery) dan menyebabkan penampakannya juga kurang menarik (HAARD, 1985).

KESIMPULAN DAN SARAN

Kesimpulan

Penelitian pengembangan pembuatan fruit leathers, telah dilakukan. Dari hasil penelitian dapat disimpulkan sebagai berikut:

1. Tiga macam formula fruit leathers telah dikembangkan, yaitu (1) campuran buah-buahan (pisang ambon, pepaya, nenas), (2) jambu biji, dan (3) mangga Indramayu.

2. Perlakuan dengan dan tanpa penambahan natrium metabisulfit tidak begitu memberikan perbedaan dihasil dari komposisi kimia produk.

3. Mutu mikrobiologi produk cenderung meningkat, karena selama penyimpanan sampai tiga bulan jumlah bakteri dan jumlah kapang menunjukkan penurunan. Jumlah bakteri menurun sampai 10 koloni per gram dan jumlah kapang menurun sampai 5 koloni per gram.

4. Residu sulfat dalam produk menunjukkan masih berada pada level yang dizinkan untuk buah-buahan kering, yaitu dibawah 50 ppm.

5. Dari segi penerimaan organoleptik (rasa, bau, warna, tekstur), ternyata rata-rata panelis menyukai produk ini, yaitu kisarannya dari biasa sampai sangat suka.

6. Secara umum produk masih tahan sampai tiga bulan tanpa mengalami perubahn yang nyata.

UCAPAN TERIMA KASIH

DAFTAR PUSTAKA

CFTRI. Home Scale Processing and Preservation of Fruits and Vegetables. , Mysore, Central Food Technological Research Institute, 1967.

Warta IHP Vol. 9 No. 1-2, 1992