PENGARUH SUHU PRETREATMENT TERHADAP KADAR LIGNIN PADA PEMBUATAN GLUKOSA DARI SEKAM PADI (EKSPERIMENTAL – SIMULASI CFD)
Abstract
Sekam padi merupakan limbah pertanian yang tersedia melimpah dan belum dimanfaatkan secara optimal. Pada penelitian ini, sekam padi dikonversikan menjadi glukosa menggunakan metode Soaking in Aqueous Ammonia (SAA) Pretreatment dengan variasi konsentrasi Ammonia (NH4OH) 20% pada variasi suhu (60, 70, 80, 90 dan 100oC). Pretreatment bertujuan untuk menurunkan kandungan lignin (delignifikasi), setelah itu dilakukan hidrolisis untuk menghasilkan glukosa sebagai bahan baku bioetanol. Simulasi menggunakan CFD ANSYS FLUENT 19.2 dapat memvalidasi tingkat akurasi data eksperimental dari proses pretreatment. Dengan menggunakan CFD ANSYS FLUENT 19.2 dapat dihasilkan kondisi penurunan kadar lignin tertinggi dengan variasi temperature (60, 70, 80, 90 dan 100 oC) pada kondisi operasi NH4OH sebesar 5%, 10%, 15% dan 20%. Hasil penelitian menunjukkan bahwa pretreatment meningkatkan kandungan selulosa dan menurunkan kandungan lignin. Kondisi optimum diperoleh pada konsentrasi ammonia 20 % dan suhu 100 oC dan dengan kadar lignin pada simulasi sebesar 13,26 % dan eksperimental sebesar 16,12 %. Kadar selulosa tertinggi diperoleh sebesar 43,90 %. Kemudian dilanjutkan dengan proses hidrolisis yang menghasilkan kadar glukosa optimum saat menggunakan konsentrasi ammonia 20% dan suhu 100 oC sebesar 7,07 ppm.
Keywords
Full Text:
PDF (Indonesian)References
Ahmad, E., Jäger, N., Apfelbacher, A., Daschner, R., Hornung, A., & Pant, K. K. (2018). Integrated thermo-catalytic reforming of residual sugarcane bagasse in a laboratory scale reactor. Fuel Processing Technology, 171(December 2017), 277–286. https://doi.org/10.1016/j.fuproc.2017.11.020
Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6(DEC), 1–19. https://doi.org/10.3389/fenrg.2018.00141
Betts, W. B., Dart, R. K., Ball, A. S., & Pedlar, S. L. (1991). Biosynthesis and Structure of Lignocellulose (Issue August 2016, pp. 139–155). https://doi.org/10.1007/978-1-4471-3470-1_7
Chang, X., Bai, Y., Wu, R., Liu, D., & Zhao, X. (2020). Heterogeneity of lignocellulose must be considered for kinetic study: A case on formic acid fractionation of sugarcane bagasse with different pseudo-homogeneous kinetic models. Renewable Energy, 162(October), 2246–2258. https://doi.org/10.1016/j.renene.2020.10.029
Datta, R. (1981). Acidogenic fermentation of lignocellulose–acid yield and conversion of components. Biotechnology and Bioengineering, 23(9), 2167–2170. https://doi.org/10.1002/bit.260230921
Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262(April), 310–318. https://doi.org/10.1016/j.biortech.2018.04.099
Kang, Q., Appels, L., Tan, T., & Dewil, R. (2014). Bioethanol from lignocellulosic biomass: Current findings determine research priorities. Scientific World Journal, 2014(Ci). https://doi.org/10.1155/2014/298153
Kassaye, S., Pant, K. K., & Jain, S. (2016). Synergistic effect of ionic liquid and dilute sulphuric acid in the hydrolysis of microcrystalline cellulose. Fuel Processing Technology, 148, 289–294. https://doi.org/10.1016/j.fuproc.2015.12.032
Kim, T. H., Taylor, F., & Hicks, K. B. (2008). Bioethanol production from barley hull using SAA ( soaking in aqueous ammonia ) pretreatment q. 99, 5694–5702. https://doi.org/10.1016/j.biortech.2007.10.055
Kumar, R., Strezov, V., Weldekidan, H., He, J., Singh, S., Kan, T., & Dastjerdi, B. (2020). Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renewable and Sustainable Energy Reviews, 123(November 2019). https://doi.org/10.1016/j.rser.2020.109763
Li, H., Kim, N. J., Jiang, M., Kang, J. W., & Chang, H. N. (2009). Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Bioresource Technology, 100(13), 3245–3251. https://doi.org/10.1016/j.biortech.2009.01.021
Mankar, A. R., Pandey, A., Modak, A., & Pant, K. K. (2021). Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresource Technology, 334(March), 125235. https://doi.org/10.1016/j.biortech.2021.125235
Mohapatra, S., Ray, R. C., & Ramachandran, S. (2019). Bioethanol From Biorenewable Feedstocks: Technology, Economics, and Challenges. In Bioethanol Production from Food Crops (pp. 3–27). Elsevier Inc. https://doi.org/10.1016/b978-0-12-813766-6.00001-1
Novia, N., Said, M., Jannah, A. M., Pebriantoni, P., & Bayu, M. (2020). Aqueous Ammonia Soaking-Dilute Acid Pretreatment to Produce Bioethanol from Rice Hull. Technology Reports of Kansai University, 62(03). https://www.kansaiuniversityreports.com/article/aqueous-ammonia-soaking-dilute-acid-pretreatment-to-produce-bioethanol-from-rice-hull
Novia, Pareek, V. K., & Agustina, T. E. (2017). Bioethanol production from sodium hydroxide - Dilute sulfuric acid pretreatment of rice husk via simultaneous saccharification and fermentation. MATEC Web of Conferences, 101, 1–5. https://doi.org/10.1051/matecconf/201710102013
Quereshi, S., Ahmad, E., Pant, K. K. K., & Dutta, S. (2020). Insights into Microwave-Assisted Synthesis of 5-Ethoxymethylfurfural and Ethyl Levulinate Using Tungsten Disulfide as a Catalyst. ACS Sustainable Chemistry and Engineering, 8(4), 1721–1729. https://doi.org/10.1021/acssuschemeng.9b03231
Rapado, P., Faba, L., & Ordóñez, S. (2021). Influence of delignification and reaction conditions in the aqueous phase transformation of lignocellulosic biomass to platform molecules. Bioresource Technology, 321(December 2020), 124500. https://doi.org/10.1016/j.biortech.2020.124500
Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B., Rupani, P. F., & Mohammadi, A. A. (2020). Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy, 199, 117457. https://doi.org/10.1016/j.energy.2020.117457
Veluchamy, C., Kalamdhad, A. S., & Gilroyed, B. H. (2018). Advanced Pretreatment Strategies for Bioenergy Production from Biomass and Biowaste. In Handbook of Environmental Materials Management (pp. 1–19). https://doi.org/10.1007/978-3-319-73645-7_45
Zhang, C., & Wang, F. (2020). Catalytic Lignin Depolymerization to Aromatic Chemicals. Accounts of Chemical Research, 53, 470–483. https://doi.org/10.1021/acs.accounts.9b00573
Zheng, Y., Shi, J., Tu, M., Cheng, Y.-S., Zhang, J., Zhou, H., Liu, D., Zhao, X., Xu, J. K., Sun, R. C., Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B., Rupani, P. F., Mohammadi, A. A., Morales, M., … Singh, B. (2021). Integrating enzymatic hydrolysis into subcritical water pretreatment optimization for bioethanol production from wheat straw. Bioresource Technology, 199(September 2019), 124833. https://doi.org/10.1016/j.renene.2020.07.031
DOI: http://dx.doi.org/10.28959/jdpi.v33i1.7622
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Jurnal Dinamika Penelitian Industri

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.