Penggunaan toluene diisocyanate sebagai blowing agent pada pembuatan karet busa dari komposit karet alam dengan butadiene nitrile rubber

Nasruddin Nasruddin

Abstract


Pembuatan karet busa telah banyak dilakukan oleh para peneliti dan industri, terutama menggunakan bahan polyurethane dengan blowing agent kalsium hidrokarbonat dan toluena diisosianat. Pembuatan karet busa pada penelitian ini menggunakan bahan utama karet alam yang dikomposit dengan butadiene nitrile rubber (NBR). Sebagai blowing agent dalam pembuatan karet busa menggunakan toluene diisocyanate (TDI) dengan perbandingan masing-masing formula 5 phr, 8 phr, 10 phr, dan 12 phr. Bahan lain yang digunakan rasionya dikondisikan. Hasil pengujian menunjukkan bahwa rasio TDI pada 8 phr dapat meningkatkan perpanjangan putus hingga 260%, dan kekuatan sobek lebih tinggi 25,1 kN/m dibandingkan formula lainnya. Hasil pemindaian menggunakan SEM pada perbandingan 5 phr dinding dan rongga udara yang terbentuk berbeda nyata dengan formula VK-02 hingga VK-04. Secara umum gambar SEM menunjukkan bahwa untuk formula VK-02 hingga VK-04 rongga udara dan dinding sel yang terbentuk hampir sama.


Keywords


Busa karet, dinding sel, komposit, rongga udara, toluena diisosianat

Full Text:

PDF (Indonesian)

References


Alinejad, M., Nikafshar, S., Gondaliya, A., Bagheri, S., Chen, N., Singh, S. K., Hodge, D. B., & Nejad, M. (2019). Lignin-Based Polyurethanes: Opportunities for Bio-Based Foams, Elastomers, Coatings and Adhesives. Polymers, 11(7), 1202.

Aneja, A., Wilkes, G. L., & Rightor, E. G. (2003). Study of slabstock flexible polyurethane foams based on varied toluene diisocyanate isomer ratios. Journal of Polymer Science, Part B: Polymer Physics, 41(3), 258–268. https://doi.org/10.1002/polb.10363

Bakar, M., Hausnerova, B., & Kostrzewa, M. (2013). Effect of diisocyanates on the properties and morphology of epoxy/polyurethane interpenetrating polymer networks. Journal of Thermoplastic Composite Materials, 26(10), 1364–1376. https://doi.org/10.1177/0892705712439570

Bao, J. B., Liu, T., Zhao, L., & Hu, G. H. (2011). A two-step depressurization batch process for the formation of bi-modal cell structure polystyrene foams using scCO2. Journal of Supercritical Fluids, 55(3), 1104–1114. https://doi.org/10.1016/j.supflu.2010.09.032

Basuli, U., Lee, G. B., Jang, S. Y., Oh, J., Lee, J. H., Kim, S. C., Jeon, N. D., Huh, Y. I., & Nah, C. (2012). Foaming Behavior, Structure, and Properties of Rubber Nanocomposites Foams Reinforced with Zinc Methacrylate. Elastomers and Composites, 47(4), 297–309. https://doi.org/10.7473/ec.2012.47.4.297

Cao, S., Li, S., Li, M., Xu, L., Ding, H., Xia, J., Zhang, M., & Huang, K. (2017). A thermal self-healing polyurethane thermoset based on phenolic urethane. September, 1–7. https://doi.org/10.1038/pj.2017.48

Chen, Y., Das, R., & Battley, M. (2017). Effects of cell size and cell wall thickness variations on the strength of closed-cell foams. International Journal of Engineering Science, 120, 220–240. https://doi.org/10.1016/j.ijengsci.2017.08.006

Coste, G., Negrell, C., & Caillol, S. (2020). From gas release to foam synthesis, the second breath of blowing agents. European Polymer Journal, 140(July), 110029. https://doi.org/10.1016/j.eurpolymj.2020.110029

Das, A., & Mahanwar, P. (2020). A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research, 3(3), 93–101. https://doi.org/10.1016/j.aiepr.2020.07.002

Das, B., Konwar, U., Mandal, M., & Karak, N. (2013). Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. Industrial Crops and Products, 44, 396–404. https://doi.org/10.1016/j.indcrop.2012.11.028

Gama, N. V, Ferreira, A., & Barros-timmons, A. (2018). Polyurethane Foams: Past, Present, and Future. https://doi.org/10.3390/ma11101841

Honorato, L., Dias, M. L., Azuma, C., & Nunes, R. C. R. (2016). Rheological properties and curing features of natural rubber compositions filled with fluoromica ME 100. Polimeros, 26(3), 249–253. https://doi.org/10.1590/0104-1428.2352

Kanagaraj, L., Bao, C. A., Ying, C. S., & Ing, K. (2019). Mechanical properties and thermal stability of methyl methacrylate grafted latex and natural rubber latex foam blends. Journal of Engineering Science and Technology, 14(6), 3616–3627.

Kasprzyk, P., Sadowska, E., & Datta, J. (2019). Investigation of Thermoplastic Polyurethanes Synthesized via Two Different Prepolymers. Journal of Polymers and the Environment, 27(11), 2588–2599. https://doi.org/10.1007/s10924-019-01543-7

Kim, I.-S., Lee, B.-W., Sohn, K.-S., Yoon, J., & Lee, J.-H. (2016). Characterization of the UV Oxidation of Raw Natural Rubber Thin Film Using Image and FT-IR Analysis. Elastomers and Composites, 51(1), 1–9. https://doi.org/10.7473/ec.2016.51.1.1

Låstbom, L., Colmsjö, A., Johansson, R., Karlsson, D., Melin, J., Nordqvist, Y., & Skarping, G. (2003). Effects of thermal degradation products from polyurethane foams based on toluene diisocyanate and diphenylmethane diisocyanate on isolated, perfused lung of guinea pig. Scandinavian Journal of Work, Environment and Health, 29(2), 152–158. https://doi.org/10.5271/sjweh.717

Lee, C. S., Ooi, T. L., Chuah, C. H., & Ahmad, S. (2007). Effect of isocyanate index on physical properties of flexible polyurethane foams. Malaysian Journal of Science, 26(2), 91–98.

Manaila, E., Stelescu, M. D., & Craciun, G. (2018). Degradation studies realized on natural rubber and plasticized potato starch based eco-composites obtained by peroxide cross-linking. International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ijms19102862

Najib, N. N., Ariff, Z. M., Manan, N. A., Bakar, A. A., & Sipaut, C. S. (2009). Effect of Blowing Agent Concentration on Cell Morphology and Impact Properties of Natural Rubber Foam. Journal of Physical Science, 20(1), 13–25.

Nasruddin, Bondan, A. T., & Agustini, S. (2020). The effect of sodium bicarbonate ratio for the mechanical properties of underarm pads rubber for crutches. IOP Conference Series: Materials Science and Engineering, 980(1). https://doi.org/10.1088/1757-899X/980/1/012052

Nasruddin dan Aprillena. (2018). Efek Penambahan Epdm Pada Karet Alam Epdm Addition Effects on Natural Rubber Mechanical. 29(2). http://ejournal.kemenperin.go.id/dpi/article/view/4327/pdf_62

Nasruddin, & Susanto, T. (2020). Study of the mechanical properties of natural rubber composites with synthetic rubber using used cooking oil as a softener. Indonesian Journal of Chemistry, 20(5), 967–978. https://doi.org/10.22146/ijc.42343

Oliveira-Salmazo, L., Lopez-Gil, A., Silva-Bellucci, F., Job, A. E., & Rodriguez-Perez, M. A. (2016). Natural rubber foams with anisotropic cellular structures: Mechanical properties and modeling. Industrial Crops and Products, 80, 26–35. https://doi.org/10.1016/j.indcrop.2015.10.050

Panwiriyarat, W., Tanrattanakul, V., Pilard, J. F., Pasetto, P., & Khaokong, C. (2013). Effect of the diisocyanate structure and the molecular weight of diols on bio-based polyurethanes. Journal of Applied Polymer Science, 130(1), 453–462. https://doi.org/10.1002/app.39170

Perera, D. G. P. M., Kumanayaka, T. O., & Walpalage, S. (2014). Effect of Zeolite on the Properties of Natural Rubber Foams. International Journal of Scientific and Research Publications, 5(9), 1–5. https://www.mendeley.com/research-papers/454b54d6-0be4-3d3a-bf6a-4f92160cdceb/

Phomrak, S., Nimpaiboon, A., Newby, B. M. Z., & Phisalaphong, M. (2020). Natural rubber latex foam reinforced with micro-and nanofibrillated cellulose via dunlop method. Polymers, 12(9), 1–16. https://doi.org/10.3390/polym12091959

Prasopdee, T., & Smitthipong, W. (2020). Effect of fillers on the recovery of rubber foam: From theory to applications. Polymers, 12(11), 1–17. https://doi.org/10.3390/polym12112745

Ramli Nonci, Akhmad Fauzi, F. D. T. (2020). ANALISA DESKRIPSI MINYAK DAN GAS. Equilibrium : Jurnl Pelatihan Pendidikan Dan Ekonomi, 17(02), 1–15. https://doi.org/10.25134/equi.v17i02.

Ramli, R. (2016). Natural Rubber Latex Foam. January.

Restasari, A., Ardianingsih, R., Abdillah, L. H., & Hartaya, K. (2013). EFFECTS OF TOLUENE DIISOCYANATE ` S CHEMICAL STRUCTURE ON POLYURETHANE ` S VISCOSITY AND. Proceedings, 59–67.

Rostami-Tapeh-esmaeil, E., Vahidifar, A., Esmizadeh, E., & Rodrigue, D. (2021). Chemistry, processing, properties, and applications of rubber foams. Polymers, 13(10), 1–53. https://doi.org/10.3390/polym13101565

Sakullax, R., & Kuhasawanwatch, S. (2017). A Feasibility Study for Investment in Para Rubber Latex Foam Production for Combat Sport Mats in Thailand. 13, 2043–2051.

Shakir, A. S. A., Badri, K. H., & Hua, C. C. (2016). Sodium hydrogen carbonate as an alternative blowing agent in the preparation of palm-based polyurethane foam. AIP Conference Proceedings, 1784(December 2018). https://doi.org/10.1063/1.4966759

Suethao, S., Ponloa, W., Phongphanphanee, S., Wong-Ekkabut, J., & Smitthipong, W. (2021). Current challenges in thermodynamic aspects of rubber foam. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-85638-z

Suleman, M. S., Khan, S., Aleem, W., & Shafiq, M. (2014). A Comprehensive Short Review on Polyurethane Foam A Comprehensive Short Review on Polyurethane Foam. December 2015.

Thuy, N. T., & Lan, P. N. (2021). A Study on Making Rigid Polyurethane Foams from Vietnam Rubber Seed Oil-Based Polyol by Using Water as a Single Blowing Agent. International Journal of Polymer Science, 2021, 4–8. https://doi.org/10.1155/2021/6638109

Tolvanen, J., Hannu, J., Nelo, M., Juuti, J., & Jantunen, H. (2016). Dielectric properties of novel polyurethane-PZT-graphite foam composites. Smart Materials and Structures, 25(9), 1–12. https://doi.org/10.1088/0964-1726/25/9/095039

Watcharakul, S., Umsakul, K., Hodgson, B., Chumeka, W., & Tanrattanakul, V. (2012). Biodegradation of a blended starch/natural rubber foam biopolymer and rubber gloves by Streptomyces coelicolor CH13. Electronic Journal of Biotechnology, 15(1), 1–15. https://doi.org/10.2225/vol15-issue1-fulltext-10

Youssef, B., Saiter, J. M., & Nanocomposites, H. O. (2008). synthesis , thermal and mechanical properties Polyurethane methacrylate / silicone interpenetrating polymer networks synthesis , thermal and mechanical properties. April. https://doi.org/10.1007/s10965-007-9147-1




DOI: http://dx.doi.org/10.28959/jdpi.v32i2.7401

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Jurnal Dinamika Penelitian Industri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.