Energy Efficiency for Biodiesel Production by Combining Two Orifices in Hydrodynamic Cavitation Reactor

Mahlinda Mahlinda, Fitriana Djafar

Abstract


Research of energy efficiency for biodiesel production process by combining two orifices on  hydrodynamic cavitation reactor had been carried out. The aim of this reseach was to studied effect of the number of orifices toward increasing temperature without using external energy source to produce biodiesel that generated by cavitation effects on orifices. The results of preliminary research showed by combining two orifices arranged in series can produce the highest thermal energy reached 48oC. Result of biodiesel production showed that yield of the highest biodiesel was 96.34% using molar ratio a methanol:oil with comparison 6:1, KOH as catalyst (1%) for 50 minutes processing time. For biodiesel quality testing showed all selected parameter met the requirements of the Indonesian National Standard (SNI) 04-7182:2006. Identification of biodiesel compound using GCMS showed the biodiesel compounds consisted of methyl oleate, methyl palmitate, acid linoleid, methyl stearate, palmitic acid and oleic acid with the total contents 98.39%.

Keywords


biodiesel; energy; hydrodynamic cavitation; orifice

Full Text:

PDF

References


Agarwal, A.K., & Das, L.M. (2001). Biodiesel development and characterization for use as a fuel in compression ignition engines. J. Eng. Gas Turbines Power, 123(2), 440-447.

Berchmans, H.J., & Hirata, S. (2008). Biodiesel production from crude Jathropha curcas L. Seed oil with a high content of free fatty acids. Bioresources Technolog, 99(6),1716-1721.

Canakci, M.A., Monyem, A., & Van Gerpen, J. (1999). Accelerated oxidation processes in biodiesel. Transaction of the American Society of Agricultural Engineers, 42(6), 1565-1572.

Chitra, P., Venkatachalam, P., & Sampathrajan, A. (2005). Optimisation of experimental conditions for biodiesel production from alkali-catalysed transesterification of Jatropha curcus oil. Energy for Sustainable Development, 9(3), 13-18.

Chongkong, S. & Tongurai, C. (2007). Biodiesel Production by Esterification of palm Fatty Acid Disstillate. Biomass and Bioenergy, 31(8), 563-568.

Deshmane, V.G., Gogate, P.R., & Pandit, A.B. 2008. Ultrasound-assisted synthesis of biodiesel from palm fatty acid distillate. Industrial and Engineering Chemistry Research, 48(17), 7923-7927.

Gogate, P. R., & Pandit, A. B. (2005). A review and assessment of hydrodynamic cavitation as a technology for the future. Ultrasonics sonochemistry, 12(1), 21-27.

Ji, J., Wang, J., Li, Y., Yu, Y., & Xu, Z. (2006). Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics, 44, e411-e414.

Kelkar, M.A., Gogate, P.R., & Pandit, A.B. (2008). Intensification of esterification of acid for synthesis of biodiesel using acoustic and hydrodinamik cavitation. Ultrasonics Sonochemistry, 15 (3), 180-188.

Kirk, R.E., & Othmer, D.F. (1980). Encyclopedia of chemical technology, 3rd ed. New York: John Wiley and Sons.

Komintarachat, C., & Chuepeng, S. (2010). Metanol-based transesterification optimization of waste used cooking oil over potassium hydroxide catalyst. American Journal of Applied Science, 7(8), 1073-1078.

Lee, S.B., Lee, J.D., & Hong, I.K. (2011). Ultrasonic energy effect on vegetable oil based biodiesel synthetic process. Journal of Ind. Eng. Chem, 17(1), 138-143.

Leung, Y.C., Wu, X., & Leung, H.K. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083-1095.

Moholkar, V.S., Senthil Kumar, P., & Pandit, A.B. (1999). Hydrodynamic cavitation for sonochemical effects. Ultrasonic Sonochemistry, 6(1), 53-65.

Prateepchaikul, G., Somnuk, K., & Allen, M. (2009). Design and testing of continuous acid-catalyzed esterification reactor for high free fatty acid mixed crude palm oil. Fuel Processing Technology, 90(6), 784-789.

Quitain, A. T., Katoh, S., & Goto, M. (2011). Microwave-assisted synthesis of biofuels. Biofuel production-recent developments and prospects. ISBN, 978-953.

Refaat, A. A., Attia, N. K., Sibak, H. A., El Sheltawy, S. T., & ElDiwani, G. I. (2008). Production optimization and quality assessment of biodiesel from waste vegetable oil. International Journal of Environmental Science & Technology, 5(1), 75-82.

Sahirman, Suryani, A., Mangunjidjaja, D., Sukardi, & Sudrajat, R. (2008). Pengujian sifat fisiko-kimia, kinerja dan pengaruh pada mesin terhadap biodiesel dari minyak biji bintagur (Cailophylum inopylum). Prosiding Seminar Nasional Hasil Penelitian (pp. 84-97). Bogor.

Stavarache, C., Vinatoru, M., & Maeda, Y. (2006). Ultrasonic versus silent methylation of vegetable oils. Ultrasonics sonochemistry, 13(5), 401-407.

Sumangat, D., & Hidayat, T. (2008). Karakteristik Metil Ester Minyak Jarak Pagar Hasil Poses Transesteriikasi satu dan dua Tahap. J. Pascapanen, 5(2), 18-26.




DOI: http://dx.doi.org/10.36974/jbi.v5i2.826

Refbacks

  • There are currently no refbacks.


BIOPROPAL Industri

Published by :

Institute for Industrial Research and Standardization (Baristand Industri) in Pontianak

Agency for Industrial Research and Development, Ministry of Industry 

Jl. Budi Utomo No. 41 Pontianak, West Kalimantan, Indonesia

Tel / Fax : +62 561 881393, 881533

email      : biopropal.industri@gmail.com

 

BIOPROPAL Industri indexed in: 

Hasil gambar untuk gambar doajHasil gambar untuk gambar google scholar